Клапан для пневматических трансмиссий это

Какие бывают клапаны

Нашей целью является рассмотрение клапанных блоков и основных типов клапанов, которые встречаются практически в каждой трансмиссии.

Не так давно в трансмиссиях использовались дроссельные, модулирующие (в зависимости от нагрузки двигателя) и управляющие (в зависимости от скорости автомобиля) клапаны для управления синхронизацией и временем переключения. Нагрузка определялась по движению троса дроссельной заслонки или разряжению за ней, а клапан на выходном валу подавал в клапанный блок сигнал давлением: чем выше скорость, тем выше давление.

Современные трансмиссии имеют полностью компьютерное управление. Двигатель и трансмиссия оснащаются множеством электронных датчиков и компьютеров для управления синхронизацией и временем переключения. При этом и прежние, и нынешние трансмиссии имеют одинаковые основные клапаны в самом клапанном блоке.

Типы клапанов

Существует множество разновидностей клапанных блоков, каждый из которых обладает своими особенностями, касающимися внешнего вида и функционирования. Но, несмотря на все эти вариации, имеется всего три типа клапанов:

Переключающий клапан, управляемый селектором

  1. Регулирующий клапан понижает входное давление до требуемого. Может иметь статическую установку, выдавая постоянное давление, либо варьировать его в зависимости от механического усилия или гидравлического давления. По конструкции это редукционный клапан.
  2. Переключающий клапан работает аналогично выключателю света – включен/выключен. Обеспечивает подачу масла в узелтрансмиссии или в другой клапан либо осуществляет сброс масла в маслосборник. Наиболее распространенным клапаном данного типа является клапан переключения. Он может подавать масло в переключающий элемент (сервоклапан или барабан сцепления), а также распределять масляное давление между двумя другими клапанами.
  3. Сервоклапан обеспечивает перемещение другого клапана – переключающего или регулирующего.

Идентификация клапанов

Одним из первых действий при определении функции клапана и интерпретации схемы распределения масла является его идентификация.

Регулирующие клапаны

Регулирующий клапан – наиболее распространенный, но одновременно и наиболее сложный в идентификации по причине существования нескольких типов регуляторов. Есть два свойства, общих для всех регуляторов, которые помогают в идентификации последних:

  1. практически все регуляторы имеют пружину (исключения – некоторые управляющие клапаны);
  2. для перемещения клапана в направлении пружины в них используется входящее давление.

Всем регуляторам необходимо балансировочное устройство для обеспечения регулировки. Большинство таких устройств используют уже отрегулированное давление жидкости (на выходе из клапана), которое передают в рабочую область регулятора. Это уравновешивающее давление воздействует на клапан, перемещая его в направлении пружины.

Регулирующий клапан

Существует три основных регулятора. В первом примере уравновешивающее масло регулируется давлением, которое отводится к концу клапана (рис. 1).

Регулирующтй клапан

Общими примерами такого типа клапана в работе являются электромагнитный регулирующий клапан в 6F35N и клапан ограничения подвода давления к силовому приводу в 6L80E (рис. 2).

Несмотря на то что эти клапаны имеют разные названия, оба они выполняют одинаковую функцию – регулируют подачу масла в переключающие электромагниты. Кроме того, оба клапана в значительной степени подвержены износу проходного отверстия, что может вызвать проблемы с переключением и сцеплением. Соблюдайте предельную осторожность при осмотре этих клапанов и их проходных отверстий.

Во втором типе регулятора используется внутреннее балансировочное устройство: давление в нем не передается к концу клапана, а распределяется между двумя контактными площадками клапана. Поскольку контактная площадка, ближняя к пружине, имеет больший размер, усилие, создаваемое гидравлическим давлением, толкает клапан в направлении пружины (рис. 3).

Клапан регулировки давления

Третьим типом регулятора является главный регулятор давления, который стравливает масло непосредственно от насосной подачи с целью поддержания уравновешивающего давления. Входящее давление главного регулятора создается насосом, а не регулируемым источником. В данных главных регуляторах для формирования уравновешивающего давления используется давление магистрали. Это предотвращает превышение заданного уровня давления во всей системе (рис. 4).

Главный регулятор давления

Переключающие клапаны

Исходя из названия, эти клапаны находятся либо в выключенном, либо во включенном состоянии. Они обеспечивают передачу масла в переключающий элемент (муфту, тормоз) или в другой клапан. Переключающие клапаны не изменяют давление подобно регулирующим клапанам, они либо открыты, либо закрыты. Как правило, если переключающий клапан отключает контур от источника давления, он также открывает этот контур, подключая его к линии сброса.

Есть одно свойство, позволяющее легко идентифицировать переключающий клапан: входное давление не применяется здесь для перемещения клапана, эти клапаны управляются внешними воздействиями. Например, клапан, который управляется селектором трансмиссии (рис. 5).

Переключающий клапан с гидравлическим управлением

Для управления клапаном может также применяться гидравлический привод, но не связанный с контуром, которым управляет этот клапан (рис. 6), или электромагнит.

Общими примерами переключающих клапанов являются клапаны 4L60E, управляемые переключающими электромагнитами.

Сервоклапаны

Служат для перемещения других клапанов. Иногда производители применяют сервоклапаны в качестве регулирующих или переключающих, такие клапаны считаются комбинированными.

Комбинированные клапаны

Комбинированный клапан может впоследствии называться сервопереключающим или серворегулирующим, однако в первую очередь это именно сервоклапан (рис. 7).

Переключающие клапаны с функцией регулировки давления

В настоящее время многие устройства обеспечивают управление давлением в линии с использованием электромагнитов с широтно-импульсной модуляцией. Питание этих электромагнитов подается и снимается с высокой частотой. Изменяя время подачи питания в течение каждого импульса можно задавать положение клапана в любой точке – от полностью открытого до полностью закрытого, регулируя таким образом давление в контуре. Но, несмотря на то что эти клапаны способны регулировать давление, они по-прежнему считаются переключающими.

Электромагнитный клапан с управлением широтно-импульсной модуляцией

На рис. 8 изображен электромагнит, принимающий импульсный сигнал. Эти импульсы поступают с высокой частотой, открывая и закрывая переключающий клапан и обеспечивая его работу в качестве регулятора.

В клапанном блоке Ford 6R60 такой тип клапанов используется для включения муфт. Это позволяет компьютеру включать и выключать муфты с высокой точностью.

Когда вы определите назначение клапана и его тип, вам будет проще разобраться, как он должен работать и что происходит неправильно.

Пневматический тормозной привод

Пневматический тормозной привод для затормаживания автомобиля или прицепа использует сжатый воздух.
Преимущества и недостатки пневматического привода во многом противоположны гидравлическому приводу.
Так, к преимуществам относят неограниченные запасы и дешевизну рабочего тела (воздух), сохранение работоспособности при небольшой разгерметизации, т. к. возможная утечка компенсируется подачей воздуха от компрессора, возможность использования на автопоездах для непосредственного управления тормозами прицепа, использование в других устройствах, таких как пневматический звуковой сигнал, привод переключения многоступенчатых коробок передач, усилитель сцепления, привод дверей автобуса, подкачка шин и т. п.
Недостатками пневмопривода являются: большое время срабатывания вследствие медленного поступления сжатого воздуха к удаленным воздухонаполняемым объемам через трубопроводы с малым диаметром, сложность конструкции, большие масса и размеры агрегатов из-за относительно небольшого рабочего давления, возможность выхода из строя при замерзании конденсата в трубопроводах и аппаратах при отрицательных температурах.

Тормозная система 19.jpg

Простейший пневматический тормозной привод автомобиля:
1 — ресивер;
2 — педаль;
3 — кран;
4 — тормозной цилиндр;
5 — пружина;
6 — шток тормозного механизма;
7 — тормозная колодка

Простейший пневматический тормозной привод автомобиля (а) состоит из ресивера, в который подается сжатый воздух из компрессора, крана, приводимого в действие от педали, и тормозной камеры, шток которой связан с разжимным кулаком тормозного механизма.
При торможении поворотная пробка крана соединяет внутреннюю полость тормозной камеры с ресивером и сжатый воздух, воздействующий на диафрагму, приводит в работу тормозной механизм (б).
Давление воздуха в тормозной камере устанавливается такое же, как в ресивере. При повороте пробки крана в другое положение (а) сжатый воздух выходит из камеры в атмосферу. Разжимной кулак возвращается в первоначальное положение и происходит растормаживание.

Читайте также  Двигатель трансмиссия или шины

Тормозная система 20.jpg

Принципиальная схема пневматического привода тормозов грузового автомобиля и прицепа

Реальный пневматический привод современного автомобиля намного сложнее. Принципиальная схема пневматического привода тормозов грузового автомобиля и прицепа показана на рисунке. Привод тягача содержит аппараты подготовки воздуха, аппараты контуров рабочей, стояночной и запасной систем тягача, аппараты управления тормозами прицепа. Привод прицепа включает аппараты рабочей и стояночной систем.
Воздух от компрессора поступает через регулятор давления, влагоотделитель к четырехконтурному защитному клапану (все эти устройства составляют систему подготовки воздуха). Тормозная система выполнена многоконтурной. К контуру привода передних тормозных механизмов относятся: ресивер с запасом воздуха, одна из секций тормозного крана, модуляторы антиблокировочной системы (АБС) и тормозные камеры передних тормозных механизмов. К контуру задних тормозных механизмов принадлежит второй ресивер, вторая секция тормозного крана, регулятор тормозных сил, модуляторы АБС и две тормозные камеры с пружинными энергоаккумуляторами. На трехосных автомобилях тормозные камеры задних осей обычно входят в состав заднего контура. На многоосных автомобилях тормозные камеры группируются в контуры различными вариантами, например, 1–2 и 3–4 оси или 1–3 и 2–4 оси. Третий контур является контуром стояночной системы и состоит из ресивера, тормозного крана со следящим действием, которым управляет водитель, ускорительного клапана и энергоаккумуляторов. Контур вспомогательной системы содержит кран управления и два пневмоцилиндра. Для управления тормозами прицепа на автомобиле-тягаче также имеются одинарный защитный клапан, клапан управления тормозами прицепа и соединительные головки.
Привод полуприцепа или прицепа имеет две соединительные головки, два магистральных фильтра, воздухораспределительный клапан, ручной кран стояночной системы без следящего действия, ресивер, регулятор тормозных сил, модуляторы АБС, тормозные камеры с энергоаккумуляторами или без них. Соединение пневмопривода тягача и прицепа выполняют двумя трубопроводами, которые образуют питающую и управляющую магистрали.
Реальная схема конкретного автомобиля может отличаться от рассмотренной наличием или отсутствием дополнительных приборов.
Сжатие воздуха для пневматического тормозного привода осуществляется компрессором, приводящимся в действие непосредственно от двигателя автомобиля. Максимальное давление, создаваемое компрессором, может достигать 1,5 МПа. Максимальное рабочее избыточное давление воздуха в ресиверах привода составляет 0,65–0,8 МПа и автоматически ограничивается регулятором давления.
Атмосферный воздух имеет определенный процент влажности. При сжатии компрессором он нагревается, а при движении по трубопроводам и через аппараты привода — остывает. При этом из сжатого воздуха выделяется влага, которая ускоряет коррозию внутренних поверхностей системы, смывает смазку и, главное, может замерзнуть в трубопроводах и аппаратах при отрицательной температуре, что приведет к отказу тормозов. Для удаления влаги (очистки воздуха) в питающей части привода, до или после регулятора давления, устанавливают влагоотделители. Очистка сжатого воздуха от влаги в них осуществляется термодинамическим или адсорбционным способом. Третий способ защиты — перевод конденсата в состояние низкозамерзающей жидкости. Для этого в специальном аппарате — спиртонасытителе — при низких температурах окружающей среды в сжатый воздух вводят пары спирта, которые, смешиваясь с выделившейся влагой, образуют раствор (антифриз) с низкой температурой замерзания.
Четырехконтурный защитный клапан, разделяет привод на четыре, действующих независимо друг от друга, контура. Защитный клапан позволяет двигаться воздуху только в направлении к ресиверам, защищая запас воздуха в ресиверах при разгерметизации на участке аппаратов подготовки воздуха. Одновременно он защищает исправные контуры от неисправного в случае обрыва в одном из них, не позволяя выйти воздуху в атмосферу сразу из всех ресиверов привода. Одинарный защитный клапан отключает привод тягача в случае разрыва питающего трубопровода прицепа. На некоторых автомобилях вместо четырехконтурного применяют двойные или тройные защитные клапаны аналогичного назначения. Пройдя через четырехконтурный клапан, сжатый воздух заполняет ресиверы контуров.
Работой любого контура рабочей системы управляет одна секция тормозного крана. Тормозной кран — это следящий аппарат, через который воздух при торможении поступает из ресивера в рабочие аппараты. Он управляется тормозной педалью в кабине водителя. При растормаживании через тормозной кран воздух из привода выпускается в атмосферу. Регулятор тормозных сил и модулятор АБС корректируют давление воздуха в контурах при торможении.
Стояночной тормозной системой управляют с помощью ручного тормозного крана, установленного в кабине водителя. Исполнительным элементом контура являются энергоаккумуляторы. Между краном и энергоаккумулятором размещен ускорительный клапан. Тормозной кран уменьшает или увеличивает давление в полости ускорительного клапана, который в соответствии с этим либо пропускает из ресивера воздух в цилиндр энергоаккумулятора, а значит, повышает в нем давление, либо для снижения давления в цилиндре выпускает воздух из него в атмосферу. Чтобы обеспечить быстрый выпуск воздуха из энергоаккумуляторов при торможении ускорительный клапан располагают максимально близко от них. Два крайних, фиксированных, положения рукоятки соответствуют максимальному избыточному давлению воздуха в энергоаккумуляторах или атмосферному. При промежуточных положениях рукоятки давление также может принимать любое промежуточное значение, что позволяет использовать данный контур в качестве контура запасной тормозной системы и производить плавное торможение.
Контур вспомогательной системы позволяет включать в работу моторный тормоз — замедлитель. При нажатии кнопки крана воздух поступает в пневмоцилиндры контура, а при отпускании — выходит в атмосферу. Из-за малого расхода воздуха этот контур не имеет собственного ресивера.
Магистраль, питающая ресивер прицепа сжатым воздухом (питающая магистраль), начинается от одинарного защитного клапана, а управляющая процессом торможения прицепа — от клапана управления тормозами прицепа. Подача сжатого воздуха в ресивер прицепа производится постоянно, независимо от того, происходит торможение тягача или нет. Управляющая магистраль используется для подачи команды на прицеп о начале торможения и его интенсивности. Команда подается путем изменения давления воздуха в управляющем трубопроводе. Чем больше давление в трубопроводе, тем интенсивнее тормозится прицеп. Максимальной интенсивности торможения соответствует максимальное давление в магистрали, при расторможенном состоянии полуприцепа избыточное давление в магистрали отсутствует. Давление в управляющей магистрали изменяется с помощью клапана управления тормозами прицепа. Он соединен с обоими контурами рабочей системы через контур стояночной системы. При торможении рабочей системой тягача воздух от обоих контуров поступает в клапан, который срабатывает и увеличивает давление в управляющей магистрали. Если выходит из строя один из рабочих контуров, торможение прицепа осуществляется по команде от исправного контура. При торможении стояночной системой тягача уменьшение давления в ее контуре приводит к срабатыванию клапана, и также осуществляется торможение прицепа.
Помимо штатного режима торможения клапан обеспечивает аварийное управление тормозами прицепа при разрыве питающей магистрали. Для этого он снабжен специальным устройством обрыва, который уменьшает давление в питающей магистрали, если командное давление от контуров тягача на вход аппарата поступает, а давление на выходе аппарата не увеличивается.
Для управления торможением прицепа его воздухораспределитель соединен с управляющей и питающей магистралями, с ресивером и тормозными камерами. По своим функциям воздухораспределительный клапан прицепа аналогичен тормозному крану на тягаче, но управляется он не педалью, а командным давлением воздуха, поступающим от тягача. В расторможенном состоянии воздух по питающей магистрали через воздухораспределитель заполняет ресивер прицепа, при этом давление в управляющей магистрали отсутствует. Максимальное давление воздуха в ресивере прицепа равно максимальному давлению в ресиверах автомобиля.
При торможении тягача с помощью рабочей или стояночной тормозной системы давление в управляющей магистрали увеличивается, что приводит к срабатыванию воздухораспределителя, который подает воздух из ресивера прицепа в тормозные камеры. Когда давление в управляющей магистрали снижается, прицеп растормаживается. Кроме того, торможение прицепа происходит всегда при уменьшении давления воздуха в питающем трубопроводе ниже 0,48 МПа, что может происходить при обычной расцепке тягача от прицепа на стоянке или при срабатывании клапана обрыва на тягаче. Такое затормаживание остановит прицеп при его полном отрыве от тягача во время движения. Растормаживание осуществляется или автоматически при последующем увеличении давления свыше 0,48 МПа, или вручную — специальной кнопкой на воздухораспределителе. Регулятор тормозных сил и модулятор АБС предназначены для корректирования давления воздуха, поступающего от воздухораспределителя к тормозным камерам.
Торможение прицепа стояночной системой производится краном, который выпускает воздух из энергоаккумуляторов тормозов прицепа. Некоторые прицепы могут снабжаться электромагнитным клапаном, который служит для включения тормозной системы прицепа при торможении автомобиля вспомогательной тормозной системой (моторным тормозом-замедлителем). При подаче электросигнала электромагнитному клапану от тягача он обеспечивает поступление сжатого воздуха из ресивера к тормозным камерам.

Читайте также  Из каких агрегатов состоит трансмиссия полноприводного автомобиля

Пневматические тормоза — принцип работы и устройство

Современный коммерческий транспорт оборудуется пневматическими тормозными системами. Принцип действия пневматических систем основан на применении энергии сжатого воздуха. Использовать воздух в качестве рабочего газа – отличное техническое решение. Это основная особенность данного вида тормозных систем и главное отличие от других, применяемых на практике. Пневматические тормозные системы укомплектованы множеством элементов управления и исполнения. Сложные по устройству, они используют общий принцип действия и имеют схематичное сходство.

Общий принцип действия тормозной пневмосистемы.

Упрощенно принцип действия можно описать так. воздушный насос – компрессор который имеет привод от двигателя накачивает в систему воздух из атмосферы. Благодаря регулятору давления, в системе создается и поддерживается предусмотренное характеристиками давление воздуха. Запас воздуха, сжатого компрессором, накапливается в специальных баллонах – ресиверах, крепящихся к раме транспортного средства. При надавливании педали тормоза водителем, воздух из ресиверов по трубкам и шлангам заполняет тормозные камеры. Своими штоками камеры приводят в действие механизмы тормозных колодок. Тормозные колодки передают энергию сжатого воздуха тормозным барабанам (дискам) колес. Движение транспорта замедляется. При отпускании водителем педали тормоза, воздух из тормозных камер возвращается в атмосферу. Механические детали системы с помощью встроенных пружин принимают исходное положение. Машина вновь набирает скорость.

Описание основных составных частей тормозной пневмосистемы.

Тормозная пневмосистема грузового автомобиля включает в себя:

  • рабочую тормозную систему,
  • стояночную тормозную систему,
  • антиблокировочную систему,
  • систему контроля и сигнализации.

Если грузовик оборудован прицепом, в общую схему добавляется тормозная система прицепа.

Описание основных рабочих элементов тормозной пневмосистемы.

  1. Компрессор. Воздушный насос. накачивает воздух в пневмостистему.
  2. Регулятор давления. Поддерживает в системе заданное рабочее давление и ограничивает поступление избытка воздуха.
  3. Осушитель воздуха. Задерживает влагу и другие примеси во избежание попадания их в механизмы системы.
  4. Четырехконтурный защитный клапан. Распределяет воздух по независимым контурам, и предотвращает утечку воздуха в случае обрыва одного из них.
  5. Ресиверы контуров. Специальные баллоны для накопления запаса сжатого воздуха.
  6. Ножной тормозной кран. Предназначен для управления рабочей тормозной системой.
  7. Тормозные камеры. преобразуют давление воздуха в механический процесс торможения.
  8. Ручной тормозной кран. Обеспечивает управление стояночной тормозной системой.
  9. Энергоаккумуляторы. Выполняют роль исполнительных механизмов и затормаживают автомобиль на время стоянки, а также в движении, когда давление в пневмосистеме упадет ниже допустимого.
  10. Детали антиблокировочной системы. Контролируют процесс равномерного торможения колесами.
  11. Манометр. Прибор на панели перед водителем с показаниями давления в системе.
  12. Контрольный, аварийный сигнализаторы. Индикаторные лампы на панели.

Общая схема работы тормозной пневмосистемы.

При запуске двигателя одновременно включается в работу компрессор. Он забирает атмосферный воздухи подает его в систему до момента достижения рабочего давления. Давление в системе определяет и ограничивает регулятор давления. Избыток воздуха направляется через выпускной клапан обратно в атмосферу. После регулятора давления воздух прогоняется через осушитель воздуха. Это устройство необходимо для фильтрации различных примесей и удержания паров атмосферной влаги. Сухой воздух обеспечивает безаварийную работу системы, особенно в морозное время. В большинстве систем регулятор давления и осушитель воздуха объединены в общий узел, оснащенный небольшим отдельным ресивером. Ресивер помогает осушителю выполнять функцию регенерации.

После осушителя воздух распределяется четырехконтурным защитным клапаном:

  • в два независимых контура рабочей тормозной системы, оборудованных раздельными ресиверами;
  • в контур стояночной и аварийной систем, оснащенный самостоятельным ресивером (через этот контур также происходит питание системы торможения прицепа);
  • в контур питания дополнительных потребителей воздуха (пневмоподвески и других).
    Кроме разделения потока воздуха клапан обеспечивает:
  • последовательное заполнение контуров сжатым воздухом.
  • при падении в каком-либо давления ниже допустимого – герметичность в остальных.

Водитель осуществляет управление главным тормозным краном через педаль тормоза. Через полости тормозного крана воздух под давлением нагнетается в тормозные камеры передних колес, через управляющие элементы – тормозные камеры задних колес. Камеры штоками воздействуют на механизмы разведения (сжатия) тормозных колодок. Автомобиль тормозит.

В контуре стояночной и аварийной тормозных систем воздух из ресивера подается на ручной тормозной кран, который управляет подачей воздуха в энергоаккумуляторы, которые устанавливаются как правило на задние колеса. Посредствам ручного тормозного крана сбрасывается давление из такого аккумулятора. В результате, пружина воздействует на испонительные механизмы. Она принудительно давит на шток тормозной камеры, обеспечивая безопасную постановку грузового автомобиля на стоянку. Энергоаккумуляторы помогают избежать аварии во время движения. Когда давление системы упадет ниже допустимого, они тормозят машину.

Еще из ресивера контура стояночной и аварийной тормозных систем подается питание на кран управления тормозами прицепа. Пневматические системы автомобиля и прицепа соеденяются с помощью питающих соединительных головок. Управляющие сигналы в систему торможения прицепа параллельно поступают от тормозных систем автомобиля: рабочей, стояночной, аварийной.

При соединении тормозной системы прицепа с основной тормозной системой грузовика подключаются отдельно:

  • питающая магистраль исполнительных механизмов,
  • управляющая магистраль.

Если на прицепе стоят тормозные камеры, оснащенные энергоаккумуляторами, дополнительно собирается цепь управления секциями энергоаккумуляторов. По питающей магистрали сжатый воздух, минуя тормозной кран прицепа, наполняет ресивер прицепа. По управляющей магистрали пневмосигнал подается в цепь управления тормозным краном прицепа. В зависимости от расположения осей, прицепы оснащаются одним или двумя регуляторами тормозных сил. Эти устройства позволяют корректировать выходной сигнал с тормозного крана, исходя из загрузки прицепа. Отрегулированный сигнал поступает в антиблокировочную систему прицепа.

Антиблокировочные системы грузовика и прицепа контролируют процесс равномерного торможения колесами. Их работу обеспечивают:

  • датчики угловой скорости колес,
  • электромагнитные клапаны – модуляторы,
  • электронный блок управления,
  • сигнальные лампы.

Система контроля и сигнализации – это манометр, показывающий водителю давление в пневмосистеме (иногда два, по числу контуров рабочей системы), и индикаторные лампы разного цвета, через датчики, контролирующие работу системы и сигнализирующие о ее состоянии.

Тормозная пневмосистема грузового автомобиля технически сложный механизм. Тяжелая габаритная машина должна надежно и предсказуемо вести себя на любой дороге. Знание устройства, принципа действия составных частей и элементов тормозной системы поможет в правильном уходе за ней. В благодарность – тормоза не подведут водителя в экстремальной ситуации.

Устройство автомобилей

Многоконтурные тормозные приводы характеризуются автономностью каждого контура, что проявляется в сохранении их работоспособности при разгерметизации или выходе из строя одного или нескольких контуров, входящих в привод.
В пневматических многоконтурных приводах автономность контуров осуществляется посредством защитных клапанов – тройного, двойного и одинарного.

Двойной защитный клапан

Двойной защитный клапан (рис. 1, а) служит для распределения поступающего из компрессора сжатого воздуха по двум контурам и поддержания давления в одном контуре при повреждении другого. Сжатый воздух из компрессора, пройдя регулятор давления и предохранитель от замерзания, поступает в центральную полость и, отжав два плоских клапана, через вывод проходит в контур вспомогательной тормозной системы, и одновременно, через другой вывод – в контур стояночной и запасной систем тягача и прицепа.

Если в одном из контуров, например, соединенным с правым выводом, произошла утечка воздуха, то центральный поршень вместе с правым пластинчатым клапаном под действием давления воздуха в левом выводе переместится вправо и прижмется к к упорному поршню (клапан при этом остается закрытым).
Как только давление в центральной полости будет больше усилия пружины первого упорно поршня, правый пластинчатый клапан отойдет от центрального поршня и избыточный воздух выйдет в негерметичный контур.
То же самое произойдет в случае повышенного расхода воздуха в одном из контуров. При повреждении одного из контуров двойной защитный клапан поддерживает в другом контуре давление 0,52…0,54 МПа.

Тройной защитный клапан

Тройной защитный клапан (рис. 1, в) распределяет воздух, поступающий из компрессора, по трем автономным контурам и, при повреждении одного из них, сохраняет давление в исправных контурах.

Читайте также  Варианты трансмиссии полного привода

защитные клапаны пневмосистемы автомобиля КамАЗ

Сжатый воздух из компрессора поступает в левую и правую полости и при возрастании давления до 0,52 МПа открывает левый и правый клапаны, преодолевая сопротивление своих пружин. Прогибая левую и правую мембраны, сжатый воздух поступает через выводы в контуры рабочих тормозных механизмов колес переднего моста и прицепа, а также колес задней тележки и прицепа.
В то же время сжатый воздух открывает левый и правый перепускные клапаны, поступает в центральную полость и при давлении 0,51 МПа, открыв центральный клапан, проходит через вывод в контур системы растормаживания.

При разгерметизации одного из контуров давление в связанной с ним полости защитного клапана уменьшится и под действием пружины клапан поврежденного контура закроется.

Если разгерметизируется питающая магистраль, идущая от компрессора, то все клапаны закроются под действием своих пружин и в контурах сохранится имеющееся в них давление.

Одинарный защитный клапан

Одинарный защитный клапан (рис. 2) служит для соединения двух контуров тормозной системы и обеспечения их независимо работы. В его функции входит сохранение давления в ресивере тягача при аварийном падении давления в магистрали прицепа, и предохранения прицепа от самопроизвольного затормаживания при внезапном падении давления в ресивере тягача.

одинарный защитный клапан пневмосистемы автомобиля КамАЗ

При давлении 0,55 МПа сжатый воздух, поступающий через входной канал, преодолевая сопротивление возвратной пружины поршня, поднимает мембрану и проходит в выходной канал, а оттуда через обратный клапан поступает в питающую магистраль прицепа.

При падении давления в входном канале ниже 0,545 МПа возвратная пружина поршня возвращает мембрану на место. Обратный клапан не позволяет сжатому воздуху из питающей магистрали попасть в выходной канал под мембрану.

Как работает тормозной клапан?

Тормозные клапаны предназначены для обеспечения плавности работы гидромоторов и гидроцилиндров, ограничения скорости движения исполнительных механизмов при действии попутной нагрузки.

Клапан тормозной

В грузоподъемных механизмах при опускании груза, нагрузка действует в туже сторону, что и гидродвигатель. Под действием нагрузки жидкость будет вытесняться из гидродвигателя с высокой скоростью, в результате чего исполнительный механизм может двигаться очень быстро, что может привести к ударам, поломкам, авариям.

Для того, чтобы ограничить скорость движения исполнительных механизмов используют тормозные клапаны.

Принцип работы тормозного клапана

Рассмотрим устройство одностороннего тормозного клапана.

Устройство одностороннего тормозного клапана

В корпусе клапана установлен золотник, на который воздействует пружина, усилие поджатия регулируется винтом. Под действием усилия пружины золотник сдвигается вправо (по схеме) поясок на золотнике перекрывает канал для движения жидкости. на противоположный торец золотника действует давление из лини управления, под действием этого давления золотник смещается влево (по схеме), отрывая канал ля течения жидкости.

Рассмотрим работу тормозного клапана в гидравлической системе.

Гидравлическая схема с применением одностороннего тормозного клапана

Установим клапан в линии соединенной с штоковой полостью гидроцилиндра, он будет работать при опускании груза. Линию управления нужно соединить с линией подвода жидкости в поршневую полость.

При отсутствии давления в поршневой полости золотник тормозного клапана под действием пружины перекроет проходное сечение, жидкость не сможет вытекать из штоковой полости цилиндра, шток останется на месте. При переключении распределителя жидкость от насоса поступит в поршневую полость, под действием давления в линии управления золотник тормозного клапана переместится, открывая проходное сечение, жидкость начнет вытекать из штоковой полости, груз станет опускаться. Но значительно разогнаться он не сможет, так как при увеличении скорости его движения давление в поршневой полости цилиндра ,а значит и в линии управления будет падать, что вызовет перемещение золотника и уменьшение проходной щели, а значит увеличение сопротивления выходу жидкости из штоковой полости. То есть жидкость вытекающая из штоковой полости будет затормаживаться, это позволит ограничить скорость движения штока.

Для того, чтобы при поступлении в полость цилиндра при поднятии груза жидкость текла в обход тормозного клапана установим параллельно ему обратный клапан.

В промышленных тормозных клапанах, обратный клапан выполняется непосредственно в золотнике.

Двухсторонние тормозные клапаны

Устройство двухстороннего тормозного клапана

Если в корпусе симметрично установить два тормозных клапана, то он станет двухсторонним, и его можно использовать для ограничения скорости движения в двух направлениях.

Для подвода жидкости к каналу управления в золотнике выполним сквозной канал, для разделения каналов управления разместим разделительный клапан.

При подаче давление в правый канал (по схеме) клапан под действием давление прижмется к торцу золотника 1 и давление будет оказывать управляющее воздействие на этот золотник.

Рассмотрим работу двустороннего тормозного клапана на примере гидравлического привода катков.

Гидравлическая схема с использование двустороннего тормозного клапана

При вращении по часовой стрелке жидкость от насоса будет поступать к гидромотору. Если попутная нагрузка начнет разгонять гидромотор, то давление в линии управления снизится, под действием усилия пружины золотник 1 сместится, уменьшая размер щели, через которую протекает жидкость, сопротивление увеличится, что ограничит скорость вытекания жидкости, а значит и частоту варения вала гидромотора.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: