Как определить кпд трансмиссии

Как определить кпд трансмиссии

Коэффициент полезного действия (КПД) механической ступенчатой трансмиссии АТС можно определить по формуле:

= (3.1)

где, кроме обозначенных в табл. 1.2:

— число работающих ( передающих крутящий момент) пар шестерен с цилиндрическими зубчатыми колесами при включении рассматриваемой передачи;

-количество конических пар шестерен;

-количество карданных шарниров.

=(1-0,05/1)*0,98 2 *0,97*0,995 2 *0,98=0,86

Передаточное число трансмиссии находят по формуле:

где — частота вращения ведущих колес;

-передаточное число дополнительных устройств, позволяющих изменить общее передаточное число трансмиссии, например – раздаточная коробка, колесный редуктор и др.

=3,75*4,1=15,375

=2,30*4,1=9,43

=1,49*4,1=6,109

=1*4,1=4,1

Расчет показателей тяговой характеристики

Линейная скорость движения автомобиля, м/с:

где – скорость движения АТС, км/ч.

Тяговая сила на ведущих колесах, Н:

Сила сопротивления воздуха, Н:

где –коэффициент обтекаемости; – плотность воздуха, кг/м 3 ;

площадь лобовой поверхности, :

= — для легковых автомобилей; (4.4)

= -для грузовых автомобилей; (4.5)

где -ширина колеи.

Pw=0,5*0,43*1,29*0,78*1,44*1,349*1,91 2 =1,533 H

Сила сопротивления качению колес, Н:

где для радиальных шин

Pf=0.018031*1355*9.81=239.678 Н (4.6)

Сила тяги по сцеплению (сила сцепления ведущих колес с дорогой) в продольном направлении, Н:

где коэффициент сцепления колес с дорогой;

сила, прижимающая ведущие колеса к дороге (сцепной вес), Н;

mi – масса, приходящаяся на ведущую ось, кг;

m i = m1 – для переднеприводных АТС;

m i = m2 – для АТС с задними ведущими колесами;

m i = m – для полноприводных АТС;

Данные расчетов см. табл. 4, график- рис. 3.

Расчет показателей тяговой характеристики и динамического паспорта

Потери мощности в трансмиссии. КПД трансмиссии

Мощность, подводимая от двигателя к ведущим колесам авто­мобиля, частично затрачивается в трансмиссии на преодоление трения (сухого или жидкостного).

Потери мощности на трение в трансмиссии (рис. 3.3)

Величина Nтренвключает в себя два вида потерь: механические и гидравлические.

Механические потери обусловлены трением в зубчатых зацеп­лениях, карданных шарнирах, подшипниках, манжетах (сальни­ках) и т. п. Величина этих потерь зависит главным образом от ка­чества обработки и смазки поверхностей трущихся деталей.

Гидравлические потери мощности связаны с перемешиванием и разбрызгиванием масла в механизмах трансмиссии (коробка передач, раздаточная коробка, ведущие мосты и др.). Величина потерь этого вида зависит от вязкости и уровня масла, залитого в механизмы трансмиссии, частоты вращения валов и шестерен.

Рис. 3.3. Графическая иллюстрация

потерь мощности в трансмиссии

v1— одно из возможных значений скорости автомобиля

Как указывалось в подразд. 3.3, потери мощности в трансмис­сии оценивают с помощью КПД трансмиссии, который можно определить следующим образом:

КПД трансмиссии равен произведению КПД механизмов, вхо­дящих в ее состав:

где ηк, ηкар, ηд, ηг — КПД соответственно коробки передач, кар­данной передачи, дополнительной коробки передач и главной передачи.

Ниже приведены значения КПД трансмиссии различных ти­пов автомобилей и ее отдельных механизмов:

Легковые автомобили. 0,90. 0,92

Грузовые автомобили и автобусы. 0,82. 0,85

понижающая передача. 0,94. 0,96

Карданная передача. 0,97. 0,98

КПД трансмиссии не остается постоянным в течение всего срока эксплуатации автомобиля. В начале эксплуатации нового автомо­биля детали механизмов трансмиссии прирабатываются, и ее КПД в течение некоторого времени повышается. Далее на протяжении длительного периода он остается почти постоянным, а затем на­чинает снижаться вследствие изнашивания деталей, отклонения их размеров от номинальных и образования зазоров. После капи­тального ремонта автомобиля и последующей приработки дета­лей КПД трансмиссии вновь возрастает, но уже не достигает пре­жнего значения.

Для автомобилей, имеющих в трансмиссии гидравлические передачи (гидротрансформаторы, гидромуфты), КПД трансмис­сии равен произведению механического ηм и гидравлического ηгид КПД:

Гидравлический КПД существенно зависит от угловой скорос­ти валов и передаваемого момента.

Радиусы колес автомобиля

У колес автомобиля (рис. 3.4) различают следующие радиусы: статический rс,динамический rд и радиус качения rкач.

Статическим радиусом называется расстояние от оси непод­вижного колеса до поверхности дороги. Он зависит от нагрузки, приходящейся на колесо, и давления воздуха в шине. Статичес­кий радиус уменьшается при возрастании нагрузки и снижении давления воздуха в шине, и наоборот.

Динамическим радиусом называется расстояние от оси катяще­гося колеса до поверхности дороги. Он зависит от нагрузки, дав­ления воздуха в шине, скорости движения и момента, передавае­мого через колесо. Динамический радиус возрастает при увеличе­нии скорости движения и уменьшении передаваемого момента, и наоборот.

Радиусом качения называется отношение линейной скорости оси колеса к его угловой скорости:

Радиус качения, зависящий от нагрузки, давления воздуха в шине, передаваемого момента, пробуксовывания и проскальзы­вания колеса, определяется экспериментально или вычисляется по формуле

где пк — число полных оборотов колеса; SK — путь, пройденный колесом за полное число оборотов.

Из выражения (3.13) следует, что при полном буксовании ко­леса (SK = 0) радиус качения rкач = 0, а при полном скольжении

Как показали исследования, на дорогах с твердым покрытием и хорошим сцеплением радиус качения, статический и динами­ческий радиусы отличаются друг от друга незначительно. Поэтому можно считать, что они практически равны, т.е. rсrдrкач.

При выполнении расчетов в дальней­шем будем использовать это приближен­ное значение. Соответствующую вели­чину назовем радиусом колеса и обо­значим rк.

Для различных типов шин радиус колеса может быть определен по ГОСТ, в котором регламентированы статичес­кие радиусы для ряда значений нагруз-

ки и давления воздуха в шинах. Кроме того, радиус колеса, м, можно рассчитать по номинальным размерам шины, используя выражение

где d — диаметр обода колеса, м; Вш ширина профиля шины, м; λш= 0,8. 0,9 — коэффициент смятия шины.

Формула (3.14) обеспечивает наиболее точные результаты для самого распространенного типа шин — тороидальных.

Потери мощности в трансмиссии. КПД трансмиссии.

Мощность, подводимая от двигателя к ведущим колёсам автомобиля, частично затрачивается в трансмиссии на преодоление трения (сухого или жидкостного).

Потери мощности на трение в трансмиссии:

Величина потерь мощности на трение включает в себя два вида потерь: механические (трение) и гидравлические (перемешивание и разбрызгивание масла).

Потери мощности в трансмиссии оценивают с помощью КПД трансмиссии, который можно определить:

КПД трансмиссии равен произведению КПД механизмов, входящих в её состав:

где — КПД соответственно коробки передач, карданной передачи, дополнительной коробки передач и главной передачи.

Значения КПД трансмиссии различных типов автомобилей и её отдельных механизмов:

Просто о сложном, но важном КПД.

КПД…что это за зверь такой-этот коэффициент полезного действия? Звучит как-то чрезвычайно занудно, научно. Причем настолько, что вникать и разбираться тут же отпадает всякое желание. Я предлагаю не спешить закрывать страничку и набраться немного терпения. Ведь КПД для любого ДВС и даже автомобиля в целом, понятие во многом определяющее…неплохо бы понимать о чем речь.
Хочу заметить, что именно благодаря работе конструкторов над повышением КПД двигателя и трансмиссии мы имеем мощные и одновременно экономичные автомобили. Конструкции двигателей постоянно претерпевают изменения главным образом в борьбе за высокий КПД, а мощность, крутящий момент, топливная экономичность являются уже продуктом, результатом этой борьбы. Нужно понимать, что можно сделать двигатель сколько угодно большим или сжигать уйму топлива в нем, но если при этом коэффициент полезного действия этого двигателя не на высоте, не ждите от него высокой мощности. Понять это очень просто. Взгляните на характеристики автомобиля, скажем, года эдак 1930 и сопоставьте их с характеристикой авто хотя бы 2000 годов. В глаза сразу бросится факт неэффективности двигателей ушедшей эпохи.

Читайте также  Если не долить масло в трансмиссию

Для начала определимся, что это вообще такое –КПД? Эта величина, собственно, показывает какая часть энергии (например-полученной при сгорании топлива)в механизме или устройстве расходуется на то, что нас интересует(например-передвижение автомобиля), а какая тратится впустую(например-нагрев системы охлаждения).Пользуясь логикой, КПД можно определить для любого механизма или системы механизмов. Достаточно «отделить зерна от плевел», иначе говоря, соотнести полезное для нас действие с нашими общими затратами энергии. Выразить математически полезную работу можно как угодно. Но так уж принято, что выражается она коэффициентом, ибо потом проще считать всяческие силы, мощности и прочую физику.
В ДВС отношение полезной механической работы, которую мы получили, к общей затраченной теплоте, полученной при сгорании топлива, называют эффективным КПД. Это основная величина и отражает она степень использования теплоты сгорания топлива в двигателе, с учетом всех видов потерь, как тепловых так и механических. Эта величина позволит нам обоснованно судить о эффективности двигателя. НО! Для оценки его эффективности на разных уровнях и этапах понятие эффективного КПД уже не подходит и в этом случае эффективный КПД разбивается на составляющие и используются еще как минимум два вида КПД это индикаторный КПД и механический КПД двигателя. Давайте разбираться что есть что и зачем?
Я думаю всем понятно, что в таком сложном механизме, как ДВС, передать энергию путем кучи преобразований и без потерь невозможно. Потери происходят из-за газообмена, когда поршень работает как насос(насосные потери), из-за трения поршня и колец о цилиндр, из-за трения в подшипниках вращающихся деталей, при приводе дополнительных механизмов, таких как газораспределительный механизм. И это далеко не все факторы. Для оценки этих потерь вводится понятие механического КПД двигателя.

Если с механикой все более или менее понятно и осязаемо, то понятиями, дающими оценку эффективности использования теплоты все не так просто.
Основным критерием оценки эффективности использования теплоты является индикаторный КПД двигателя. Он отражает степень использования теплоты в действительном, происходящем в нашем конкретном двигателе, цикле. С учетом всех тепловых потерь в нем. Математически- это отношение теплоты, которая потратилась на совершение полезной работы ко всей затраченной теплоте.
Кроме индикаторного КПД двигателя, существует термический КПД, который описывает эффективность термодинамического цикла, по которому работает данный ДВС. Теория и физика чистой воды, посему останавливаться подробно не будем.
В дополнение к термическому КПД рассмотрим относительный КПД двигателя, который дает оценку насколько удачно конструкция двигателя позволила реализовать идеальный термодинамический цикл, по сравнению с реальным, протекающим в нашем конкретном двигателе. То есть помогает нам учесть потери теплоты. Математически относительный КПД выражается отношением индикаторного(реального теплового) КПД нашего двигателя к термическому КПД идеального термодинамического цикла по которому работает наш двигатель.
И термический и индикаторный КПД рассматривают для дополнительной оценки двигателей. Математически-они две составляющие индикаторного КПД, который можно выразить произведением этих двух величин.
Подробно рассматривать термодинамические циклы не будем, ибо это дебри физики и полагаю никакого терпения не хватит читателю. Возможно в будущем найду хорошую статью и сделаю копипаст.
Как итог хочу сказать что представление о каждом из рассмотренных выше КПД двигателя, дает хороший ключ к пониманию как провести грамотный тюннинг двигателя, а так же для чего конструкторы намудрили в том или ином случае с какой-то казалось бы простой деталью. Это все в свою очередь порой хорошо прочищает мозги от безответственных, «колхозных» настроений и настраивает на грамотный, щепетильный подход к ремонту и обслуживанию автомобиля. Обо всем этом подробно я и постараюсь рассказать вам в следующих статьях.
За сим откланяюсь. Надеюсь, Вам было интересно.

Расчет КПД и передаточных чисел трансмиссии

Коэффициент полезного действия (КПД) механической ступенчатой трансмиссии АТС определяется по формуле:

где Кхол – коэффициент холостых потерь в трансмиссии;

cэ – коэффициент эксплуатационной загрузки;

hц, hк, hкард – соответственно КПД цилиндрической, конической и карданной передачи;

кц – число работающих (передающих крутящий момент) пар шестерен с цилиндрическими зубчатыми колесами при включении рассматриваемой передачи;

кк – количество конических пар шестерен;

кш – количество карданных шарниров.

Определяя количество элементов трансмиссии, необходимо учитывать степень их нагружения. Если элемент имеет 100% нагружение, то кi = 1. Если поток мощности разветвляется, то на участках с 50% нагружением, например симметричный дифференциал, два элемента считают за один (кi = 0.5) и т.п.

Передаточное число трансмиссии определяется по формуле:

где Uкп, Uгп, Uрк, Uкр, Uдоп – соответственно передаточные числа коробки передач, главной передачи, раздаточной коробки, колесного редуктора и дополнительных устройств, позволяющих изменить общее передаточное число трансмиссии.

Расчетные данные занести в таблицу 3.1.

Таблица 3.1 – Расчет КПД и передаточных чисел

Передачи hц кц hк кк hкар кш hтр Uтр Примечание
1 2 3 4 5 . Кхол = = Uдоп =

Расчет показателей тяговой характеристики

Расчет выполняется для установившегося движения по горизонтальной местности.

Линейная скорость движения автомобиля рассчитывается по формуле:

где rк – радиус колеса автомобиля, м.

Сила тяги на ведущих колесах рассчитывается по формуле:

Рт = . (4.2)

Сила сопротивления воздуха определяется по формуле:

Рw = kw F v 2 , (4.3)

где F – площадь лобовой поверхности, ;

kw – коэффициент сопротивления воздуха, Н×с 2 /м 4 (см. приложение Г).

Площадь лобовой поверхности транспортного средства определяется по формуле:

для легковых автомобилей F = 0,78×Ва×На; (4.4)

для грузовых автомобилей F = В×На, (4.5)

где Ва – ширина транспортного средства, м;

На – высота транспортного средства, м;

В – ширина колеи транспортного средства, м.

Сила сопротивления качению колес определяется по формуле:

где fv – коэффициент сопротивления качению в зависимости от скорости:

для радиальных шин fv = fт×(1+(0,0216×v) 2 ); (4.7)

для шин с диагональным кордом fv = fт×(1+v 2 /1500), (4.8)

где fт – табличный коэффициент сопротивления качению (см. приложение Г).

Сила тяги по сцеплению (сила сцепления ведущих колес с дорогой) в продольном направлении рассчитывается по формуле:

где jх – коэффициент сцепления колес с опорной поверхностью в продольном направлении (см. приложение Г);

mi – масса, приходящаяся на ведущую ось, кг.

m i = m1 – для переднеприводных АТС;

m i = m2 – для АТС с задними ведущими колесами;

m i = mа – для полноприводных АТС;

Расчетные данные занести в таблицу 4.1, по результатам которой построить тяговую характеристику (см. рисунок 4.1).

Коэффициент полезного действия (КПД)

Представьте, что вы пришли на работу в офис, выпили кофе, поболтали с коллегами, посмотрели в окно, пообедали, еще посмотрели в окно — вот и день прошел. Если вы не сделали ни одного дела по работе, то можно считать, что ваш коэффициент полезного действия равен нулю.

В обратной ситуации, когда вы сделали все запланированное — КПД равен 100%.

По сути, КПД — это процент полезной работы от работы затраченной.

Вычисляется по формуле:

Читайте также  Когда наследственная трансмиссия невозможна

Формула КПД

η = (Aполезная/Aзатраченная) * 100%

η — коэффициент полезного действия [%]

Aполезная — полезная работа [Дж]

Aзатраченная — затраченная работа [Дж]

Есть такое философское эссе Альбера Камю «Миф о Сизифе». Оно основано на легенде о неком Сизифе, который был наказан за обман. Его приговорили после смерти вечно таскать огромный булыжник вверх на гору, откуда этот булыжник скатывался, после чего Сизиф тащил его обратно в гору. То есть он делал совершенно бесполезное дело с нулевым КПД. Есть даже выражение «Сизифов труд», которое описывает какое-либо бесполезное действие.

Давайте пофантазируем и представим, что Сизифа помиловали и камень с горы не скатился. Тогда, во-первых, Камю бы не написал об этом эссе, потому что никакого бесполезного труда не было. А во-вторых, КПД в таком случае был бы не нулевым.

Полезная работа в этом случае равна приобретенной булыжником потенциальной энергии. Потенциальная энергия прямо пропорционально зависит от высоты: чем выше расположено тело, тем больше его потенциальная энергия. То есть, чем выше Сизиф прикатил камень, тем больше потенциальная энергия, а значит и полезная работа.

Потенциальная энергия

Еп = mg

Еп — потенциальная энергия [Дж]

m — масса тела [кг]

g — ускорение свободного падения [м/с^2]

На планете Земля g ≃ 9,8 м/с^2

Затраченная работа здесь — это механическая работа Сизифа. Механическая работа зависит от приложенной силы и пути, на протяжении которого эта сила была приложена.

Механическая работа

А = FS

A — механическая работа [Дж]

F — приложенная сила [Н]

И как же достоверно определить, какая работа полезная, а какая затраченная?

Все очень просто! Задаем два вопроса:

  1. За счет чего происходит процесс?
  2. Ради какого результата?

В примере выше процесс происходит ради того, чтобы тело поднялось на какую-то высоту, а значит — приобрело потенциальную энергию (для физики это синонимы). Происходит процесс за счет энергии, затраченной Сизифом — вот и затраченная работа.

КПД в механике

Главный секрет заключается в том, что эта формула подойдет для всех видов КПД.

КПД

η = (Aполезная/Aзатраченная) * 100%

η — коэффициент полезного действия [%]

Aполезная — полезная работа [Дж]

Aзатраченная — затраченная работа [Дж]

Дальше мы просто заменяем полезную и затраченную работы на те величины, которые ими являются.

Давайте разберемся на примере задачи.

Задача

Чтобы вкатить санки массой 4 кг в горку длиной 12 метров, мальчик приложил силу в 15 Н. Высота горки равна 2 м. Найти КПД этого процесса. Ускорение свободного падения принять равным g ≃9,8 м/с^2

Запишем формулу КПД.

η = (Aполезная/Aзатраченная) * 100%

Теперь задаем два главных вопроса:

Ради чего все это затеяли?

Чтобы санки в горку поднять — то есть ради приобретения телом потенциальной энергии. Значит в данном процессе полезная работа равна потенциальной энергии санок.

Потенциальная энергия

Еп = mgh

Еп — потенциальная энергия [Дж]

m — масса тела [кг]

g — ускорение свободного падения [м/с^2]

На планете Земля g ≃9,8 м/с^2

За счет чего процесс происходит?

За счет мальчика, он же тянет санки. Значит затраченная работа равна механической работе

Механическая работа

А = FS

A — механическая работа [Дж]

F — приложенная сила [Н]

Заменим формуле КПД полезную работу на потенциальную энергию, а затраченную — на механическую работу:

η = Eп/A * 100% = mgh/FS * 100%

η = 4*9,8*2/15*12 * 100% = 78,4/180 * 100% ≃ 43,6 %

Ответ: КПД процесса приблизительно равен 43,6 %

КПД в термодинамике

В термодинамике КПД — очень важная величина. Она полностью определяет эффективность такой штуки, как тепловая машина.

  • Тепловой двигатель (машина) – это устройство, которое совершает механическую работу циклически за счет энергии, поступающей к нему в ходе теплопередачи.

Схема теплового двигателя выглядит так:

Схема теплового двигателя

У теплового двигателя обязательно есть нагреватель, который (не может быть!) нагревает рабочее тело, передавая ему количество теплоты Q1 или Qнагревателя (оба варианта верны, это зависит лишь от учебника, в котором вы нашли формулу).

  • Рабочее тело — это тело, на котором завязан процесс (чаще всего это газ). Оно расширяется при подводе к нему теплоты и сжимается при охлаждении. Часть переданного Q1 уходит на механическую работу A. Из-за этого производится движение.

Оставшееся количество теплоты Q2 или Qхолодильника отводится к холодильнику, после чего возвращается к нагревателю и процесс повторяется.

КПД такой тепловой машины будет равен:

КПД тепловой машины

η = (Aполезная/Qнагревателя) * 100%

η — коэффициент полезного действия [%]

Aполезная — полезная работа (механическая) [Дж]

Qнагревателя — количество теплоты, полученное от нагревателя[Дж]

Если мы выразим полезную (механическую) работу через Qнагревателя и Qхолодильника, мы получим:

A = Qнагревателя — Qхолодильника.

Подставим в числитель и получим такой вариант формулы.

КПД тепловой машины

η = Qнагревателя — Qхолодильника/Qнагревателя * 100%

η — коэффициент полезного действия [%]

Qнагревателя — количество теплоты, полученное от нагревателя[Дж]

Qхолодильника — количество теплоты, отданное холодильнику [Дж]

А возможно ли создать тепловую машину, которая будет работать только за счет охлаждения одного тела?

Точно нет! Если у нас не будет нагревателя, то просто нечего будет передавать на механическую работу. Любой такой процесс — когда энергия не приходит из ниоткуда — означал бы возможность существования вечного двигателя.

Поскольку свидетельств такого процесса в мире не существует, то мы можем сделать вывод: вечный двигатель невозможен. Это второе начало термодинамики.

Запишем его, чтобы не забыть:

Невозможно создать периодическую тепловую машину за счет охлаждения одного тела без изменений в других телах.

Задача

Найти КПД тепловой машины, если рабочее тело получило от нагревателя 20кДж, а отдало холодильнику 10 кДж.

Решение:

Возьмем формулу для расчета КПД:

η = Qнагревателя — Qхолодильника/Qнагревателя * 100%

η = 20 — 10/20 *100% = 50%

Ответ: КПД тепловой машины равен 50%

Идеальная тепловая машина: цикл Карно

Давайте еще чуть-чуть пофантазируем: какая она — идеальная тепловая машина. Кажется, что это та, у которой КПД равен 100%.

На самом деле понятие «идеальная тепловая машина» уже существует. Это тепловая машина, у которой в качестве рабочего тела взят идеальный газ. Такая тепловая машина работает по циклу Карно. Зависимость давления от объема в этом цикле выглядит следующим образом

тепловая машина по циклу Карно

А КПД для цикла Карно можно найти через температуры нагревателя и холодильника.

КПД цикла Карно

η = Tнагревателя — Tхолодильника /Tнагревателя *100%

η — коэффициент полезного действия [%]

Tнагревателя — температура нагревателя[Дж]

Tхолодильника — температура холодильника [Дж]

КПД в электродинамике

Мы каждый день пользуемся различными электронными устройствами: от чайника до смартфона, от компьютера до робота-пылесоса — и у каждого устройства можно определить, насколько оно эффективно выполняет задачу, для которой оно предназначено, просто посчитав КПД.

КПД

η = Aполезная/Aзатраченная *100%

η — коэффициент полезного действия [%]

Aполезная — полезная работа [Дж]

Aзатраченная — затраченная работа [Дж]

Для электрических цепей тоже есть нюансы. Давайте разбираться на примере задачи.

Читайте также  Как устроена трансмиссия гранд витара

Задачка, чтобы разобраться

Найти КПД электрического чайника, если вода в нем приобрела 22176 Дж тепла за 2 минуты, напряжение в сети — 220 В, а сила тока в чайнике 1,4 А.

Решение:

Цель электрического чайника — вскипятить воду. То есть его полезная работа — это количество теплоты, которое пошло на нагревание воды. Оно нам известно, но формулу вспомнить все равно полезно

Количество теплоты, затраченное на нагревание

Q — количество теплоты [Дж]

c — удельная теплоемкость вещества [Дж/кг*˚C]

tконечная — конечная температура [˚C]

tначальная — начальная температура [˚C]

Работает чайник, потому что в розетку подключен. Затраченная работа в данном случае — это работа электрического тока.

Работа электрического тока

A = (I^2)*Rt = (U^2)/R *t = UIt

A — работа электрического тока [Дж]

U — напряжение [В]

R — сопротивление [Ом]

То есть в данном случае формула КПД будет иметь вид:

η = Q/A *100% = Q/UIt *100%

Переводим минуты в секунды — 2 минуты = 120 секунд. Теперь намм известны все значения, поэтому подставим их:

η = 22176/220*1,4*120 *100% = 60%

Ответ: КПД чайника равен 60%.

Давайте выведем еще одну формулу для КПД, которая часто пригождается для электрических цепей, но применима ко всему. Для этого нужна формула работы через мощность:

Работа электрического тока

A — работа электрического тока [Дж]

Подставим эту формулу в числитель и в знаменатель, учитывая, что мощность разная — полезная и затраченная. Поскольку мы всегда говорим об одном процессе, то есть полезная и затраченная работа ограничены одним и тем же промежутком времени, можно сократить время и получить формулу КПД через мощность.

Документация

Примеры готовых узлов транспортного средства Powertrain Blockset™ включают live скрипты, которые можно запустить, чтобы оценить и сообщить об энергии и потерях мощности в компоненте — и уровень подсистемы. В этом примере показано, как исследовать удар КПД передачи автомобиля с бензиновым двигателем на КПД трансмиссии.

Выполнение этого примера требует Stateflow ® лицензия. Можно установить пробную лицензию Stateflow с помощью Add-On Explorer.

Откройте проект примера готовых узлов автомобиля с бензиновым двигателем. По умолчанию приложение имеет сопоставленный 1.5–L двигатель с искровым зажиганием и двойную передачу муфты.

Дважды кликните Analyze Power and Energy, чтобы открыть live скрипт. Чтобы сгенерировать энергетический отчет, выберите Run.

Live скрипт обеспечивает:

Полные энергетические сводные данные и экспортируемый Excel ® электронная таблица, содержащая данные. Например, это похоже на Полный Сводный отчет для автомобиля с бензиновым двигателем. Результаты показывают что:

Полной входной энергией трансмиссии является 47.5 MJ

Двойным средним КПД передачи муфты является 0.933

Engine и КПД ходовой части, включая гистограмму механизма времени потрачены в различных КПД механизма. Например, это похоже на гистограмму КПД механизма для автомобиля с бензиновым двигателем.

Сводные данные объекта ходовой части, которые обеспечивают средний КПД, энергетический вход, выход, потерю, и сохраненный. Например, это похоже на Сводные данные Объекта Ходовой части для автомобиля с бензиновым двигателем. Результаты показывают, что входной энергией ходовой части является 10.1 MJ.

Регистрация данных так, чтобы можно было использовать Инспектора Данных моделирования, чтобы анализировать КПД трансмиссии и энергетические сигналы передачи. Например, они похожи на входную мощность и графики потерь для автомобиля с бензиновым двигателем.

В разделе Overall Summary отчета:

Выберите Dual Clutch Transmission, чтобы открыть подсистему Блока DCT.

Выберите блок Dual Clutch Transmission .

В маске блока откройте параметры Transmission.

Измените двойную передачу муфты так, чтобы это было менее эффективно. По умолчанию блоком Dual Clutch Transmission значение параметров Efficiency vector, eta является [0.930, 0.930, 0.930, 0.940,0.947, 0.948,0.946, 0.943,0.940, 0.935] .

Установите параметр Efficiency vector, eta на .9*[0.930, 0.930, 0.930, 0.940,0.947, 0.948,0.946, 0.943,0.940, 0.935] .

Сохраните DrivetrainConVeh модель.

В окне модели SiCIPtReferenceApplication нажмите Analyze Power and Energy, чтобы открыть live скрипт. Чтобы сгенерировать энергетический отчет, выберите Run.

После того, как вы запускаете live скрипт, в Полных Сводных данных, исследуете КПД. Например, эти результаты показывают что:

Полной входной энергией трансмиссии является 50.6 MJ

Двойным КПД передачи муфты является 0.85

Когда двойная передача муфты менее эффективна, трансмиссия требует большего количества энергии завершить ездовой цикл.

Смотрите также

Связанные примеры

Больше о

Документация Powertrain Blockset

Поддержка

© 1994-2021 The MathWorks, Inc.

1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.

2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.

3. Сохраняйте структуру оригинального текста — например, не разбивайте одно предложение на два.

4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.

5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: