Как еще может называться трансмиссия вэу

Применение редукторов в ветроэнергетических установках

Применение редукторов в ветроэнергетических установках / Е. А. Манакова, И. А. Гаибов, И. А. Бычков [и др.]. — Текст : непосредственный // Молодой ученый. — 2016. — № 28.2 (132.2). — С. 86-87. — URL: https://moluch.ru/archive/132/37229/ (дата обращения: 28.10.2021).

В статье рассматриваются редукторные и без редукторные ВЭУ. Описываются их преимущества и недостатки, а также их принцип действия. Изучены несколько примеров без редукторных ветроустановок. Сравнение двух типов ВЭУ и выявление более выгодного типа.

Ключевые слова: редуктор, ВЭУ, альтернативный источник энергии

Ветер, как альтернативный источник энергии, в последнее время приобретает все большую популярность. Одними из важнейших характеристик, которые определяют ценность этого природного явления, представляют собой его направление и скорость. Но в виду непостоянства природных условий приходится прибегать к разного рода техническим приемам для устранения имеющихся проблем. Одной из таких проблем в ветроэнергетике является небольшая скорость вращения ветродвигателя, причем, чем больше габариты установки, тем сильнее проявляется этот недостаток. Решением, отчасти, может служить механический редуктор или, по-другому, мультипликаторы.

В статье [1] описано разделение ветроэнергетических установок на редукторные и безредукторные.

Достоинства и недостатки редукторных ВЭУ:

+ Позволяют получать большие моменты на единицу массы;

+ Имеют сравнительно небольшую стоимость;

— Относительно быстро выходят из строя;

— Создают высокий уровень шума;

Достоинства и недостатки безредукторных ВЭУ:

+ Низкий уровень шума;

+ Могут работать при малых скоростях ветра;

+ Конструкция позволяет избежать потерь, характерных редукторным ветроэнергетическим установкам;

Механические редукторы имеют довольно простой принцип действия, но сами по себе весьма сложные устройства. Они служат механизмом для передачи и преобразования крутящего момента. Для преобразования вращения вала ветродвигателя используется механическая передача.

Редукторы бывают с различным типом используемой передачи:

— Цилиндрические — надежны и имеют длительный ресурс эксплуатации. Такие редукторы применяются при сложных режимах работы, для преобразования и передачи больших мощностей, эффективны при непрерывных промышленных процессах. КПД такого редуктора может достигать 98 %, это зависит от его передаточного числа.

— Червячные — устройства с механической передачей от винта, или так называемого «червяка», на зубчатое колесо (червячное колесо). У таких редукторов высокое передаточное отношение, большое тепловыделение и относительно низкий КПД. При серьезных нагрузках такой тип редукторов не используется.

— Планетарные — они имеют большую нагрузочную способность, небольшой вес, люфт и сравнительно малые габариты, а также позволяют получить большие передаточные числа.

— Конические — этот тип редукторов применяют в том случае, если есть необходимость в изменении направления кинетической передачи. Могут непрерывно работать при высоких оборотах.

— Комбинированные — несколько передач, находящихся в одном корпусе. Они имеют выгодное соотношение технических характеристик, габаритов и стоимости.

Безредукторные ВЭУ предусматривают установку электромагнитного подвеса ротора. Это решает ряд проблем: износ рабочих поверхностей, вибрации, шумность, затраты энергии на трение, затраты на смазочные материалы. БРВЭУ состоит из центральной трубы ротора, лопастной системы, нескольких электромагнитных подшипников с системами управления, осевой электромагнитной опоры, электрогенератора и статора. В статье [2] приводится расчет математической модели БРВЭУ.

В статье [3] рассматривается расчёт математической модели ВЭУ, включающей в себя: ветродвигатель крыльчатого типа, синхронный генератор с постоянными магнитами и мостовой неуправляемый выпрямитель. Такие расчеты позволяют достаточно точно описать отдельные аспекты исследуемых объектов и создавать на их основе экспериментальные образцы для испытаний. Рассмотрим каждую из моделей в отдельности.

Модель ветродвигателя крыльчатого типа. Расчетаэродинамических показателей производятся для каждого элемента лопасти с учетом профиля и угла атаки воздуха. Наилучшие АДХ достигаются при нулевом угле установки лопасти, но на практике установочный угол составляет 10–15º, дабы обеспечить достаточную прочность ветроколеса.

Модель синхронного генератора. В структурной основе его лежит система уравнений Парка-Горева. В состав электроэнергетической системы включены генераторы, регуляторы напряжения, нагрузка и т. д.

Также в статье представлена схема расчета модели мостового выпрямителя.

Немаловажным фактором работы ВЭУ являются колебания скорости ветра. В динамических расчетах установки используют несколько моделей динамики воздушного потока. Работа ВЭУ происходит в условиях турбулентности воздушного потока, поэтому моделирование влияния последней на работу ветроустановки очень важно.

После сравнения редукторных и безредукторных ветроэнергетических установок можно сделать вывод, что, несмотря на все свои недостатки, редукторные установки еще не скоро будут вытеснены безредукторными, но и в силу своих особенностей могут остаться конкурентоспособными еще долгое время.

Электрических и ветрозарядные ВЭУ,насосы водоподъёмники

Ветронасосные ВЭУ в зависимости от быстроходности ВД и типа насоса характеризуются большим разнообразием применяемых систем передачи мощностей (СПМ).

При пневматической СПМ ВК приводит во вращение компрессор, а сжатый им воздух используют для привода насосов или непосредственно для подъема воды. В первом случае между компрессором и насосом устанавливают пневматический двигатель (турбину), во втором — сам воздух используют в качестве рабочего тела, осуществляющего подъем воды путем ее вытеснения (насосы замещения) или эжектирования.

Электрическая СПМ обычно состоит из генератора, приводимого во вращение ВК, электрического двигателя насоса, питающих проводов, устройства регулирования напряжения, защиты генератора и двигателя от перегрева и токов короткого замыкания. Чаще всего используют трехфазные асинхронные генераторы переменного тока с самовозбуждением от конденсаторов короткозамкнутого асинхронного двигателя центробежного насоса и быстроходные (двух- и трехлопастные) ВД. Запуск электродвигателя насоса осуществляют одним из трех способов: подключением двигателя к возбужденному генератору, работающему на холостом ходу; замыканием цепи возбуждения генератора, к зажиму которого заранее присоединен двигатель; частотным пуском двигателя. При этом перед пуском двигатель должен быть присоединен к зажимам генератора, а генератор должен начинать работать при замкнутой цепи возбуждения.

Механические СПМ применяют чаще всего для привода поршневых, штанговых насосов, а также ковшовых и ленточных водоподъемников от ВД малой быстроходности, обладающих большим моментом страгивания. Для привода водоструйных насосов и водоподъемников инерционного типа используют ВД большой быстроходности.

Ветросиловые ВЭУ агрегатируют с рабочими машинами только посредством механических СПМ с отбором мощности от нижнего редуктора. Применяют ВД разной быстроходности с различными способами регулирования частоты вращения ВК. Основное требование к системе регулирования — надежное ограничение частоты вращения ВК во всем рабочем диапазоне скоростей ветра на уровне, определяемом прочностью конструкции ВК. Суммарная нагрузка регламентируется на уровне номинальной путем подключения в работу части рабочих машин.

Электрические ВЭУ постоянного тока (ветрозарядные, гарантированного и негарантированного питания)

Ветрозарядные ВЭУ работают только на заряд аккумуляторных батарей (АБ) и могут иметь несколько систем АБ, каждая из которых поочередно работает в режиме заряда и разряда (когда одна система АБ питает нагрузку, другая заряжается). Выполняют установки обычно по безредукторной схеме с применением быстроходных ВД и генераторов переменного тока. Такие установки снабжают простейшей автоматикой, обеспечивающей автоматическое переключение АБ с одного режима работы на другой и их защиту от перезаряда и глубокого разряда.

ВЭУ гарантированного питания работают параллельно с АБ. Исходя из этого, они снабжаются специальными системами автоматического управления, обеспечивающими работу ветрозарядных ВЭУ в зависимости от изменения скоростей ветра и внешней нагрузки в каждом из следующих режимов:

  1. ветроагрегат (ВА) питает внешнюю нагрузку без АБ;
  2. ВА заряжает АБ без внешней нагрузки;
  3. ВА заряжает АБ и одновременно питает внешнюю нагрузку;
  4. ВА и АБ работают параллельно на внешнюю нагрузку;
  5. АБ питает внешнюю нагрузку без ВА.

Таким образом, АБ работает в смешанном режиме, переходящем с режима заряд—разряд в периоды отсутствия внешней нагрузки или ветра на режим постоянного подразряда (буферный режим) при наличии достаточного ветра и внешней нагрузки.

ВЭУ негарантированного питания работают без АБ вместе с блоком управления, обеспечивающим стабильное напряжение на выходе. Ветрозарядные ВЭУ имеют мощность от нескольких десятков до нескольких сотен ватт. ВК устанавливают непосредственно на вал генератора.

Во всех случаях установки этого типа должны иметь системы регулирования частоты вращения ВК. Никаких специфических требований к аэродинамике ВК не предъявляют. Мощность внешней нагрузки регламентируется — она не должна превышать номинальную мощность ветрозарядного ВЭУ.

Электрические ВЭУ переменного тока (автономные, гибридные и сетевые)

Принципы их использования и способы управления отличаются друг от друга. В первом случае ВЭУ рассчитывают для работы изолированно на собственную электрическую сеть с целью снабжения энергией заданного потребителя; во втором — для работы параллельно с другими энергетическими установками соизмеримой мощности (дизель-генераторы, малые ГЭС и др.) на общую, ими образованную, сеть; в третьем — для работы непосредственно на электрическую сеть несоизмеримо большей мощности. Эффект несоизмеримо большей мощности здесь реализуется при отношении Nс/NВЭУ свыше 8—10, независимо от их абсолютных значений.

Особенностью всех установок Электрических ВЭУ этой группы при применении соответствующего регулирования ВК и определенной системы генерирования электрической энергии (СГЭЭ), обеспечивающей преобразование механической энергии вращающегося ВК в электрическую энергию промышленной частоты и напряжения, является то, что они могут эксплуатироваться в двух режимах: при переменной частоте вращения ВК, что позволяет получить максимально возможную выработку энергии, и при постоянной частоте вращения ВК, что позволяет упростить СГЭЭ при некотором уменьшении выработки энергии. Режим переменной частоты вращения ВК используют при скоростях ветра меньших расчетного значения (v < vp), а режим постоянной частоты вращения ВК — либо во всем диапазоне рабочих скоростей ветра, либо только при v ³ vр.

Читайте также  Как работает вариаторная трансмиссия

В установках автономного типа мощность нагрузки потребителя строго регламентируют. Она не должна превышать номинальную мощность Электрических ВЭУ. Поэтому статической перегрузки трансмиссии по моменту вращения при v > vр не будет.

Никаких специальных требований к аэродинамике электрических ВЭУ не предъявляют. Режим постоянной частоты вращения ВК обеспечивается регулятором частоты вращения ВК, а режим переменной частоты вращения ВК — системой СГЭЭ с использованием балластного сопротивления. Системные и сетевые установки на режимах постоянной частоты вращения ВК при скоростях ветра v > vр могут развивать мощность, превышающую их номинальные значения, но чтобы избежать возможные перегрузки, они, кроме системы регулирования частоты вращения ВК, должны иметь еще и системы ограничения мощности.

Как еще может называться трансмиссия вэу

Библиографическая ссылка на статью:
Крыльцов С.Б., Пудкова Т.В. Обзор современных топологий силовой части ветрогенераторов большой мощности // Современные научные исследования и инновации. 2016. № 12 [Электронный ресурс]. URL: https://web.snauka.ru/issues/2016/12/75301 (дата обращения: 20.10.2021).

В настоящее время в мире можно отметить заметный рост доли возобновляемых источников энергии в общей генерации электроэнергии, что объясняется государственными программами и субсидиями для производителей установок генерации электроэнергии и операторов сетей, направленными на улучшение экологической обстановки в регионах [5]. Производство энергии с помощью ветроэнергетических установок (ВЭУ) является одним из ключевых направлений возобновляемой энергетики. Вместе с ростом общей мощности ветрогенераторов[3], можно также отметить тенденцию к увеличению мощности отдельных установок. Так, например, максимальная мощность ветрогенераторов увеличилась за последние 5 лет с 3 до 10 МВт[4].

Одной из особенностей ВЭУ является их переменная загруженность по мощности, имеющая кубическую зависимость от скорости набегающего потока воздуха. При низких скоростях ветра наличие свободного запаса по току силового преобразователя в составе ВЭУ позволяет использовать его для повышения качества напряжения распределительной сети ветропарка, что уменьшает номинальную мощность, а соответственно и стоимость компенсирующих устройств, использующихся для обеспечения требуемых показателей качества по факторам несимметрии, высших гармоник, провалов и колебаний напряжения сети ветропарка [6].

Так как эффективность и способность ВЭУ обеспечивать качество напряжения сети ветропарка напрямую зависит от топологии её силовой части, актуальной задачей является анализ современных топологий и конструктивных особенностей мощных ветроэнергетических установок.

Общее строение и принцип работы ветрогенератора

Существует два основных типа ВЭУ – с горизонтальной и вертикальной осью вращения ротора[2]. КПД ВЭУ с вертикальной осью существенно ниже, чем обусловлено их практически полное отсутствие на рынке ВЭУ мультимегаваттного уровня. Поэтому в работе рассматриваются только ВЭУ с горизонтальной осью вращения ротора.

Рисунок 1. Механические и силовые составляющие ветрогенератора с горизонтальной осью вращения ротора[7].

Наиболее распространённые топологии ВЭУ с горизонтальной осью вращения имеют сходное конструктивное исполнение, представленное на рисунке 1. Процесс генерации электрической энергии, отдаваемой ВЭУ в сеть, проходит через несколько стадий. В первую очередь с помощью лопастей из набегающей воздушной массы извлекается кинетическая энергия и преобразуется к механической энергии на валу ротора ВЭУ, при этом эффективность преобразования зависит от площади соприкосновения воздушной массы и лопасти. Механические и силовые компоненты ВЭУ рассчитаны на генерацию и передачу в сеть определённой мощности, превышение которой может привести к аварийным режимам работы ВЭУ, раннему износу оборудования и негативному влиянию на сеть, поэтому при больших скоростях ветра генерируемая мощность должна быть ограничена.

Здесь следует выделить два способа ограничения максимальной мощности ветрогенератора:

1) Первый заключается в изменении угла поворота лопастей, для чего лопасти крепятся к ротору ВЭУ с помощью сервоприводов, поворачивающих лопасти, таким образом уменьшая их площадь соприкосновения с набегающим воздушным потоком.

2) Второй способ заключается в производстве лопастей особой формы, которая при увеличении скорости вращения приводит к уменьшению КПД преобразования кинетической энергии, содержащейся в воздушной массе в механическуюмощность, передаваемую ротору. Производство таких лопастей для мощных ветрогенераторов сопряжено с трудностями, таким образом основным способом ограничения максимальной механической мощности, производимой ВЭУ является поворот лопастей. Таким образом почти все ветрогенераторы большой мощности имеют сервоприводы на роторе для поворота лопастей.

Кроме того, для достижения наибольшей эффективности при небольших скоростях ветра люлька вектрогенератора должна быть направлена таким образом, чтобы площадь обдувания лопастей была максимальной. Для этого в башне ВЭУ также устанавливают электропривод, поворачивающий люльку противоположно набегающему воздушному потоку.

Механическая часть ветрогенератора представляет собой два вала ротора – низкоскоростной с креплением на нём лопастей и высокоскоростной ротор генератора. Согласование передачи механического момента между валами достигается с помощью установки трансмиссии.

Силовая часть ВЭУ представляет собой систему, осуществляющую соединение генератора с сетью, и является основным существенным отличием, позволяющим выделитьотдельные структуры реализацииВЭУ.

Ветрогенераторы с неуправляемойскоростью вращения ротора

Первыми мощными ветрогенераторами, получившими широкое распространение, были ветрогенераторы без силового преобразователя. Структура данной топологии представлена на рисунке 2. Данная топология является наиболее дешёвой и простой в реализации. В качестве генератора обычно используется асинхронный генератор с короткозамкнутым ротором (АГКР), статор которого подключается напрямую к обмоткам понижающего трансформатора. При таком подключении АГКР при запуске может потреблять ток, превышающий номинальный в 5–7 раз. Для ограничения пусковых токов перед обмотками статора АГКР обычно устанавливают устройство плавного пуска. Кроме того, статор АГКР постоянно потребляет из сети реактивную мощность, которая может достигать 30% от номинальной мощности. Для компенсации реактивной мощности параллельно статору также обычно устанавливают батареи конденсаторов.

Рисунок 2. Структура ВЭУ без силового преобразователя.

Наиболее существенным недостатком данной топологии является отсутствие возможности управления скоростью вращения ротора. Наибольшая мощность, извлекаемая ветрогенератором из воздушной массы, достигается при определённом соотношении между скоростью вращения ротора и скоростью набегающего на лопасти воздушного потока. Отсутствие возможности регулировать скорость вращения существенно уменьшает КПД преобразования энергии в ВЭУ, поэтому несмотря на простоту и низкую стоимость производства ВЭУ такой топологии, их эффективность крайне низка. Кроме того, скорость вращения ротора у рассматриваемой топологии связана с частотой напряжения сети, а, следовательно, резкое изменение скорости ветра приводит к существенным колебаниям выходной мощности, генерируемой ВЭУ, а также увеличивает нагрузку как на механические, так и силовые составляющие ВЭУ.

Ветрогенераторы с преобразователем напряжения в цепи статора

Серьёзный скачок в развитии мощных полупроводниковых ключей в 1980-х гг. привёл к повсеместному распространению силовых инверторов напряжения. Несмотря на то, что основной областью их применения стал частотно-регулируемый электропривод, данная тенденция коснулась и ветроэнергетики. Подключение генераторов в составе ВЭУ к сети через AC-ACпреобразователи позволило построить новую топологию, устраняющую основные недостатки ВЭУ с неуправляемой скоростью вращения ротора.

Рисунок 3. Структура ВЭУ с силовым преобразователем в контуре статора.

Структура топологии ВЭУ с силовым преобразователем представлена на рисунке 3. В соответствии с данной топологией генератор может быть выполнен как в виде асинхронного, так и синхронного генератора. Широкое применение нашла конструкция на основе синхронного генератора с постоянными магнитами (СГПМ), которая при относительно высокой стоимости изготовления генератора обеспечивает высокую энергоэффективность и наименьшие затраты на обслуживание генератора. Кроме того, среди прочих конструкций генераторов, СГПМ достаточно просто сконструировать с большим числом пар полюсов, что позволяет исключить трансмиссию. Статор генератора в данной топологии подключается к сети через силовой преобразователь (СП), представляющий собой два инвертора напряжения, чаще всего выполненные на IGBT-модулях, соединённые общим звеном постоянного тока (ЗПТ). Инвертор со стороны генератора позволяет управлять частотой и амплитудой напряжения на статоре, что в свою очередь позволяет управлять скоростью вращения ротора, достигая наибольшей энергоэффективности ВЭУ [1]. ЗПТ в свою очередь не только разделяет частоты напряжения сети и статора, но и служит фильтром, сглаживающим пульсации генерируемой мощности, которые связаны с резкими изменениями скорости ветра.

Недостатком данной топологии является относительно высокая стоимость силовых преобразователей необходимой мощности, а также дополнительные потери на переключение силовых ключей в их составе.

Таким образом, основные особенности топологии ВЭУ с силовым преобразователем в контуре статора:

Ветрогенераторы на основе машины двойного питания

Топология ВЭУ на основе машин двойного питания (МДП) появилась относительно недавно как альтернатива ВЭУ с силовым преобразователем в цепи статора. Структура ВЭУ с МДП представлена на рисунке 4. В рассматриваемой топологии в качестве генератора используется асинхронный генератор с фазным ротором, статор которого подключен напрямую к зажимам трёхобмоточного понижающего трансформатора. Ротор МДП через контактные кольца соединён с AC-AC преобразователем, сетевой инвертор которого также подключается к трёхобмоточному трансформатору.

Рисунок 4. Структура ВЭУ с машиной двойного питания.

Наличие силового преобразователя в контуре ротора позволяет ВЭУ с МДП достигать динамических характеристик аналогичных ВЭУ с силовым преобразователем в контуре статора, при поддержании в цепи ротора лишь 25-30% от номинальной мощности, чем и обусловлено ключевое преимущество рассматриваемой топологии – уменьшение стоимости ВЭУ, габаритов силовой части и снижение тепловых потерь, потерь на переключение и намагничивание за счёт уменьшения мощности силового преобразователя.

Читайте также  Автомобили с бесступенчатой трансмиссией

Основным недостатком данной топологии является наличие контактных колец, что существенно увеличивает затраты на обслуживание такого типа генераторов.

Основные характеристики рассматриваемой топологии:

Выводы

В работе рассмотрены топологии силовой части ВЭУ, получившие наиболее широкое распространение в генерирующих установках большой мощности – до нескольких мегаватт. Производство и эксплуатация ВЭУ с нерегулируемой скоростью вращения ротора наименее оправдано в связи с их низкой эффективностью. ВЭУ с силовым преобразователем в цепи статора и ВЭУ на основе машины двойного питания являются основными топологиями для производства мощных генерирующих установок, выбор между которыми обусловлен балансом между изначальной стоимостью производства генерирующей установки и затратами на её обслуживание.

  1. Никишин А.Ю., Казаков В.П. Современные ветроэнергетические установки на базе асинхронных машин // Современные проблемы науки и образования. – 2012. – № 6. [Электронный ресурс], URL: http://www.scienceeducation.ru/ru/article/view?id=7937 (Дата обращения: 30.11.2016).
  2. Ветрогенераторы: классификация и типы, конструкция и схема работы: //Альтернативная энергетика. [Электронный ресурс], URL: http://batsol.ru/vetrogeneratory-klassifikaciya-i-tipy-konstrukciya-i-sxema-raboty.html (Дата обращения 28.11.2016).
  3. European Wind Energy Association. The economics of wind energy. EWEA; 2009.
  4. Patel, S. IEA: Wind Power Could Supply 18% of World’s Power by 2050. Retrieved from POWER: // Power generation news and jobs in coal, gas, nuclear, renewables: 2013, January 12. [Электронный ресурс], URL: http://www.powermag.com/iea-wind-power-could-supply-18-of-worlds-power-by-2050/ (Дата обращения 29.11.2016)
  5. Renewable Energy Directive. 2012. December 17. [Электронный ресурс], URL: http://ec.europa.eu/clima/policies/transport/fuel/docs/com_2012_595_en.pdf (Дата обращения 29.11.2016)
  6. Sergei Kryltcov. Doubly fed wind turbine performance in variable grid conditions. Master’s Thesis, 2014.
  7. Wind Turbine Parts: //The Solar Guide: [Электронный ресурс], URL: http://www.thesolarguide.com/wind-power/turbine-parts.aspx (Дата обращения 30.11.2016)

Связь с автором (комментарии/рецензии к статье)

Оставить комментарий

Вы должны авторизоваться, чтобы оставить комментарий.

&copy 2021. Электронный научно-практический журнал «Современные научные исследования и инновации».

Ветроэнергетические установки

Ветроэнергетические установкиВетроэнергетическая установка (ВЭУ) представляет собой комплекс взаимосвязанного оборудования и сооружений, предназначенный для преобразования энергии ветра в другие виды энергии (электрическую, механическую, тепловую и т. п.).

Ветроагрегат являясь основной частью ВЭУ, состоит из ветродвигателя, системы передачи ветровой мощности на нагрузку (потребителю) и самого потребителя ветровой энергии (какого-либо устройства: электромашинного генератора, водяного насоса, нагревателя и т. п.).

Ветродвигатель является устройством для преобразования кинетической энергии ветра в механическую энергию рабочего движения ветродвигателя. Рабочие движения, которые совершает ветродвигатель, могут быть разными. На существующих сегодня ветродвигателях в качестве рабочего движения используется круговое вращательное движение. Вместе с тем известны многочисленные предложения (иногда даже реализованные) по использованию других видов рабочего движения, например колебательного.

Лопастная система ветродвигателя (ветроколесо) может иметь различное конструктивное исполнение. У современных ветродвигателей лопастная система выполнена в виде жестких лопастей с крыловым профилем в поперечном сечении (иногда в этом случае используют термины «крыльчатые», или пропеллерные, ветродвигатели).

Лопастная система ветродвигателя

Известны успешно работающие лопастные системы, в которых вместо лопастей используются вращающиеся цилиндры (использование эффекта Магнуса). Имеются предложения по созданию лопастной системы на основе различного типа лопастей с гибкими поверхностями (паруса).

Таким образом, лопасть — это составная часть ветроколеса, создающая крутящий момент. Лопастная система ветродвигателя с рабочим круговым вращательным движением может иметь горизонтальную или вертикальную оси вращения.

При расчете и проектировании конкретного ветродвигателя помимо ветровых условий его работы необходим учет как особенностей ветроагрегата, тик и всей ВЭУ. В связи с этим ВЭУ классифицируют по следующим признакам:

виду вырабатываемой энергии,

признаку работы с постоянной или переменной частотой вращения ветроколеса,

типу системы передачи.

Ветроэлектрическая станция большой мощности

В зависимости от вида вырабатываемой энергии все ветроэнергетические установки подразделяют на ветроэлектрические и ветромеханические. Электрические ВЭУ, в свою очередь, подразделяются на встроустановки, вырабатывающие электроэнергию постоянного либо переменного тока. Механические ВЭУ служат для привода рабочих машин.

В зависимости от назначения электрические ВЭУ постоянного тока подразделяют на ветрозарадные, гарантированного электроснабжения потребителя, негарантированного электроснабжения. Электрические ВЭУ переменною тока подразделяют на автономные, гибридные, работающие параллельно с энергостистемой соизмеримой мощности (например, с дизельной установкой), сетевые, работающие параллельно с мощной энергостистемой.

Классификация ветроэнергетических установок по областям применения определяется их назначением.

При расчете и проектировании ветродвигателя и выборе его номинальных параметров необходим учет типа нагрузки (электрогенератор, водяной насос и т. п.), типа системы передачи ветровой мощности к потребителю, типа системы генерирования и аккумулирования электроэнергии.

Система передачи ветровой мощности представляет собой определенный комплекс различных устройств для передачи мощности от вала ветроколеса к валу соответствующей машины ветроагрегата (потребителя) с повышением или без повышения частоты вращения мня ной машины. В современной ветроэнергетике чаше всего используют механический способ передачи мощности.

Система генерирования электроэнергии представляет собой электромашинный генератор и комплекс устройств (устройства управления, силовой электроники, аккумулятор и т. д.) для подключения к потребителю со стандартными параметрами электроэнергии.

мощный ветроагрегат

Выпускаются и работают ВЭУ мощностью от нескольких ватт до тысяч киловатт. Выделяют четыре группы: очень малой мощности — менее 5 кВт, малой мощности — от 5 до 99 кВт, средней мощности — от 100 до 1 000 кВт, большой мощности — свыше 1 МВт. Ветроустановки каждой группы отличаются друг от друга прежде всего конструктивным выполнением, типом фундаметнта, способом установки ветроагрегата на ветер, системой регулировання, системой передачи ветровой мощности, способом монтажа и способом обслуживания.

Преимущественное распространение получили горизонтально-осевые ветроэнергетические установки .

На рис. 1 показана конструкция ветроэнергетической установки и общий вид ветроэлектростанции.

Конструкция ветроэлектрической установки

Рис. 1. Конструкция ветроэлектрической установки: 1 — ветродвигатель (ветроколесо), 2 — ветроголовка, 3 — генератор, 4 — редуктор, 5 — поворотная платформа, 6 — измерительное устройство, 7 — мачта ВЭУ содержит ветротурбину и электрогенератор, связанный с валом ветротурбины непосредственно или через редуктор.

ВЭУ содержит ветротурбину и электрогенератор, связанный с валом ветротурбины непосредственно или через редуктор.

Ветряная электрическая станция (ВЭС) состоит из нескольких ветроэлектрических установок, работающих параллельно и отдающих вырабатываемую электроэнергию в электроэнергетическую систему.

Измерительное устройство дает сигнал на поворот ветроголовки при изменении направления или силы ветра, а также регулирует угол поворота лопастей в зависимости от силы ветра.

Существуют ветроагрегаты на 500, 1000, 1500, 2000, 4000 кВт. Ветроагрегат на 500 кВт имеет: мачту высотой 40-110 м, ветроголовку массой 15-30 т, частоту вращения n = 20-200 об/мин, частоту вращения ротора генератора 750-1500 об/мин (редукторный привод) или 20-200 об/мин (прямоприводной агрегат).

В качестве генераторов в ВЭУ чаще используются асинхронные генераторы с короткозамкнутым ротором , которые отличаются от синхронных большей надежностью, простотой конструкции и меньшей массой, что необходимо для повышения надежности ветроэнергоустановки.

Ветроэнергетические агрегаты могут работать автономно или параллельно с энергетической системой. При автономной работе частота вращения ветродвигателя ВД не регулируется или поддерживается в пределах ±50 %, поэтому частота и напряжение на зажимах генератора непостоянны, т. е. вырабатываемая электрическая энергия некачественная, а потребители таких ВЭУ часто не предъявляют высоких требований к качеству (в основном нагревательные приборы). Для получения качественной энергии применяются стабилизаторы, состоящие из выпрямителя, инвертора и аккумулятора.

Мощные ВЭУ работают параллельно с энергосистемой (рис. 2 ). Эта параллельная связь обеспечивает постоянство частоты, напряжения и постоянство частоты вращения ветродвигателя. Мощность, которую генератор отдает в сеть, зависит от вращающего момента двигателя и определяется силой ветра.

Возможна совместная работа ВЭУ с сетью с соединением через промежуточный преобразователь частоты при переменной частоте вращения ветродвигателя.

При использовании асинхронного генератора ветродвигатель также может работать с меняющейся частотой вращения, а генератор отдает в сеть качественную электроэнергию. Для возбуждения асинхронный генератор потребляет из сети или от специальной конденсаторной батареи реактивную мощность, а синхронный — сам ее создает.

Параллельная работа ветроэнергетической установки с мощной энергосистемой

Рис. 2 . Параллельная работа ветроэнергетической установки с мощной энергосистемой: ВД — ветродвигатель, Р — редуктор, Г — генератор, В — выпрямитель, И — инвертор, У — блок управления, ЭС — энергосистема

Особенности системных ветроэнергетических станций (ВЭС):

1. Они располагаются в местах с высоким ветровым потенциалом.

2. Имеют мощность энергоблоков: 1500-2000 кВт и более при континентальном базировании и 4000-5000 кВт при морском и прибрежном базировании.

3. Используют генераторы асинхронные с короткозамкнутым ротором и синхронные (часто с возбуждением постоянными магнитами) с невысоким генераторным напряжением (0,50-0,69 кВ).

4. Низкий КПД станции — 30-40 %.

5. Отсутствие тепловой нагрузки.

6. Высокая маневренность, но полная зависимость от погодных условий.

7. Диапазон рабочих скоростей ветра от 3,0-3,5 до 20-25 м/с. При скорости ветра менее 3,0-3,5 м/с и более 20-25 м/с ВЭУ отключаются от сети и устанавливаются в нерабочее положение, а при восстановлении скорости ветра ВЭУ подключаются к сети и разгоняются с помощью генератора, работающего в двигательном режиме.

8. Отсутствие отбора электрической мощности на генераторном напряжении (кроме собственных нужд).

9. Передача электроэнергии потребителям на напряжениях 10, 35, 110, кВ.

энергия ветра

Современная ветроэнергетика во многих странах мира является частью энергетических систем, а в ряде стран — одной из главных составляющих альтернативной энергетики на возобновляемых источниках энергии. Подробнее об этом читайте здесь: Развитие ветроэнергетики в мире

Читайте также  Замена масла в трансмиссии нивы 21214

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Принцип работы ветрогенератора

В упрощенном виде принцип работы ветрогенератора можно представить следующим образом.

Сила ветра приводит в движение лопасти, которые через специальный привод заставляют вращаться ротор. Благодаря наличию статорной обмотки, механическая энергия превращается в электрический ток. Аэродинамические особенности винтов позволяют быстро крутить турбину генератора.

Принцип работы

Дальше сила вращения преобразуются в электричество, которое аккумулируется в батарее. Чем сильнее поток воздуха, тем быстрее крутятся лопасти, производя больше энергии. Поскольку работа ветрогенератора основана на максимальном использовании альтернативного источника энергии, одна сторона лопастей имеет закругленную форму, вторая – относительно ровная. Когда воздушный поток проходит по закругленной стороне, создается участок вакуума. Это засасывает лопасть, уводя её в сторону. При этом создается энергия, которая и заставляет раскручиваться лопасти.

Схема генератора для ветряка

Схема работы ветрогенератора: показан принцип преобразования энергии ветра и действия внутренних механизмов

Во время своих поворотов винты также вращают ось, соединённую с генераторным ротором. Когда двенадцать магнитиков, закреплённых на роторе, вращаются в статоре, создаётся переменный электрический ток, имеющий такую же частоту, как и в обычных комнатных розетках. Это основной принцип того, как работает ветрогенератор. Переменный ток легко вырабатывать и передавать на большие расстояния, но невозможно аккумулировать.

Принципиальная схема ветрогенератора

Принципиальная схема ветрогенератора

Для этого его нужно преобразовать в постоянный ток. Такую работу выполняет электронная цепь внутри турбины. Чтобы получить большое количество электроэнергии, изготавливаются промышленные установки. Ветровой парк обычно состоит из нескольких десятков установок. Благодаря использованию такого устройства дома, можно получить существенное снижение расходов на электроэнергию. Принцип действия ветрогенераторов позволяет применять их в таких вариантах:

  • для автономной работы;
  • параллельно с резервным аккумулятором;
  • вместе с солнечными батареями;
  • параллельно с дизельным или бензиновым генератором.

Если поток воздуха движется со скоростью 45 км/час, турбина вырабатывает 400 Вт электроэнергии. Этого хватает для освещения дачного участка. Данную мощность можно накапливать, собирая её в аккумуляторе.

Специальное устройство управляет зарядкой аккумуляторной батареи. По мере уменьшения заряда вращение лопастей замедляется. При полной разрядке батареи лопасти снова начинают вращаться. Таким способом зарядка поддерживается на определённом уровне. Чем сильнее воздушный поток, тем больше электроэнергии может произвести турбина.

Система торможения вращения лопастей

Чтобы установка не вышла из строя при сильном напоре воздуха, она снабжена специальной системой торможения. Если раньше движущиеся магниты индуцировали ток в обмотках, то теперь данная сила используется для остановки вращающихся магнитов. Для этого создается короткое замыкание, при котором замедляется движение ротора. Возникающее противодействие замедляет вращение магнитов.

Устройство и конструкция ветрогенератора, а также узлов

Конструкция ветрогенератора и узлов

При ветре больше 50 км/час тормоза автоматически замедляют вращение ротора. Если скорость движения воздуха доходит до 80 км/час, тормозная система полностью останавливает лопасти. Все части турбины сконструированы так, чтобы максимально использовалась воздушная энергия. Когда ветер дует, лопасти вращаются, и генератор преобразует их движение в электричество. Совершая двойное преобразование энергии, турбина производит электричество из обычного перемещения воздушных масс.

классический ветрогенератор

Внешне ветрогенератор напоминает флюгер — направлен в ту сторону, откуда дует ветер

Данное устройство весьма полезно не только в каких-то экстремальных условиях, но и в обычной повседневной жизни. Довольно часто системы ветрогенераторов применяются на дачах или в тех населенных пунктах, где регулярно бывают перебои с подачей электроэнергии. Самостоятельно сделанный автономный источник электричества имеет такие преимущества:

  • установка экологически чистая;
  • отсутствует потребность её заправки топливом;
  • не накапливаются какие-либо отходы;
  • устройство работает очень тихо;
  • имеет большой срок эксплуатации.

Все ветрогенераторы работают по одинаковой схеме. Сначала полученное от давления ветра переменное напряжение преобразуется в постоянный ток. Благодаря этому заряжается аккумулятор. Затем инвертором снова производится переменный ток. Это нужно для того, чтобы светились лампочки; работал холодильник, телевизор и т. д. Благодаря аккумуляторной батарее, можно пользоваться электроприборами в безветренную погоду. Кроме того, во время сильных порывов ветра напряжение в сети остаётся стабильным.

Увеличение мощности установки

Конструкцию некоторых ветрогенераторов имеет ветровой датчик. Он собирает данные о направлении и скорости воздушного потока. Генератор ветряка не может выдать больше номинальной мощности, однако, в любое оборудование заложен запас он может составлять от 10-30% от расчетных. На этот «запас» рассчитывать не стоит, так как программно и конструктивно в ветрогенератор заложена защита от перегрузок.

Увеличить мощность ветроустановки можно с помощью системы резервирования электроэнергии на базе аккумуляторных батарей.

Выходная мощность (кВт) ветрогенератора определяется мощностью инвертора. Исходя из выдаваемых киловатт, можно определиться с максимальным количеством подключаемых электроприборов. Чтобы увеличить выходную мощность установки, необходимо параллельно подключить несколько инверторов.

Для трехфазных схемы электропитания необходимо установить по инвертору на каждую фазу.

Если мощности на фазе недостаточно, увеличивают количество инверторов, если это предусмотрено производителем. При отсутствии ветра продолжительность подачи электроэнергии прекращается. Генерации энергии не происходит, поэтому к ветрогенератору подключают накопители энергии, смотрите схему ниже.

схема увеличения мощности и емкости ветрогенератора

Схема увеличения мощности и емкости ветрогенератора

Накопитель энергии состоит из связки инвертор-батарея. О батареях вы можете прочитать в этой рубрике, а о накопителях в этой. Увеличение ёмкости аккумуляторных батарей увеличивает запас хранимой энергии, но и длительность зарядки. Скорость зарядки аккумулятора зависит от мощности генератора и количества инверторов, которые тоже могут пропустить через себя только ту мощность, которая заложена производителем. Соответственно, скорость зарядки аккумуляторов зависит от пропускной способности инвертора и не зависит от мощности ветрогенератора.

Выбор ветрогенератора

Самые качественные ветряки производят в Германии, Франции и Дании. Эти страны делают ветровые установки для снабжения электричеством жилого частного сектора, фермерских хозяйств, школ, небольших торговых точек. В России из-за низкой стоимости электроэнергии и негласной монополии на продажу электроэнергии ветроустановки, солнечные панели и другие виды альтернативной энергии не сильно распространены.

Мобильный ветрогенератор

Мобильный ветрогенератор подойдет для нефтепромышленности или монтажных бригад, которые ведут строительство в полях (прототип)

Но высокая стоимость подключения удаленных объектов от электросетей (есть до сих пор не электрифицированные деревни), хамство чиновников, длительные процедуры хождения и получения ТУ у монопольных компаний вынуждают собственников использовать альтернативную энергию своих объектов.

Прежде все вы должны понимать, что КПД ветровой установки составляет около 60%, есть зависимость от скорости ветра, и потребуется периодически проводить ТО. Если вы все-таки решили сделать выбор в пользу ветрогенератора, следует знать. Выбирать ветрогенератор нужно исходя из конкретных обстоятельств его применения. Существуют новые разработки и модели: с повышенным КПД, вертикальные, горизонтальные, ортогональные, безлопастные.

Подсчитывается активная и резистивная мощность всех потребителей энергии.

Для предприятий или частного дома эти данные могут быть в проекте или счетах за электроэнергию. Если вам необходимо обеспечить электроэнергией дачу выбирается модель ветроустановки на 1-3 кВт, инвертор нужно небольшой мощности и можно обойтись без аккумуляторных батарей. Принцип наличия дачной ветроустановки прост: есть ветер — есть электричество, нет ветра — работаем в огороде или по хозяйству. Простой ветрогенератор можно сделать самому, достаточно собрать необходимые материалы и соединить их вместе.

Для частного дома постоянного проживания, такой принцип не подойдет. При частом отсутствии ветра следует придать особое значение аккумулятору. Здесь нужна большая ёмкость. Однако, чтобы он быстрее заряжался, сам генератор электричества также должен быть большой мощности. То есть отдельные узлы установки тесно взаимосвязаны друг с другом. Более надежная комбинация — симбиоз с дизель-генератором и солнечными панелями. Это 100% гарантия наличия электричества в доме, но и более дорогая.

При наличии скважины вы будете полностью энергонезависимые от внешних сетей.

Сейчас большое распространение получили коммерческие ветровые установки. Получаемая с их помощью электроэнергия продается различным предприятиям, испытывающим недостаток в энергоснабжении. Обычно такие электростанции состоят из нескольких ветрогенераторов различной мощности. Вырабатываемое ими переменное напряжение в 380 вольт подается непосредственно в электросеть предприятия. Кроме того, ветрогенераторы могут использоваться для зарядки большого числа аккумуляторных батарей, с которых потом преобразованная в переменное напряжение энергия также подается в электрическую сеть.

Ветрогенераторы российского производства

Ветрогенераторы российского производства

В большинстве случаев владельцы предприятий ставят ветроустановки, солнечные панели и дизель-генераторы для нужд собственного производства. Получение разрешение на продажу электричества в России — это, скажем так, отдельная история. После проведения энергоаудита, высвобождаются мощности, например, путем замены ламп освещения на светодиодные. Подсчитывается срок окупаемости, при отсутствии бюджета можно разделить модернизацию на этапы.

Технологии развиваются. Создаются энергонезависимые дома, офисы, станции на земле и воде. Наша команда инженеров поможет вам с выбором, расчетом, проектом и монтажом оборудования. Готовы ответить на ваши вопросы в комментариях или через форму.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: