Трансмиссия схема с обозначениями

Общее устройство механической трансмиссии автомобилей.

П 16Панов А. Л. Общие сведения о трансмиссии: Учебное пособие по части курса Трансмиссия / ГАПОУ ТО «ТЮМЕНСКИЙ ЛЕСОТЕХНИЧЕСКИЙ ТЕХНИКУМ». – Тюмень, 2016.

Учебное пособие по части курса Трансмиссия включает в себя адаптированный конспект по теме Общие сведения о трансмиссии, тестовые задания для самостоятельной подготовке по теме, рекомендуемый список литературы.

Материалы составлены в соответствии с ФГОС по специальности 23.02.04 Техническая эксплуатация подъемно-транспортных, строительных, дорожных машин и оборудования (по отраслям), утвержденного приказом Министерства образования и науки Российской Федерации № 386 от 22.04.2014 г. и с учетом особенностей обучения в ГАПОУ ТО «ТЛТ». Адресовано студентам и преподавателям техникумов и колледжей технического профиля.

Печатается по решению Методического совета ГАПОУ ТО «Тюменский лесотехнический техникум» от «07» сентября 2016 года протокол № 1

ББК 39.34

©ГАПОУ ТО «ТЛТ», 2016

СОДЕРЖАНИЕ

1 Адаптированный конспект по теме общие сведения о трансмиссии 4

1.1 Общее устройство механической трансмиссии автомобилей 4

1.2 Особенности трансмиссии переднеприводных автомобилей с продольным и поперечным расположением двигателя 5

1.3 Схемы трансмиссий колесных и гусеничных тракторов 5

1.4 Особенности трансмиссии гусеничных тракторов с 2-х поточной трансмиссией 6

2 Тесты для самоконтроля по теме общие сведения о трансмиссии 8

1 Адаптированный конспект по теме общие сведения о трансмиссии

1.1 Общее устройство механической трансмиссии автомобилей.

Трансмиссией называется силовая передача, осуществляющая связь двигателя с ведущими колесами машины. Она служит для передачи от двигателя к ведущим колесам мощности и крутящего момента, необходимого для движения машины.

Рисунок 1 — Схемы механических трансмиссий автомобилей с колесными формулами 4×2:

1 — сцепление; 2 — коробка передач; 3 — карданная передача; 4 — главная передача; 5 — дифференциал; 6 — полуоси.

1.2 Особенности трансмиссии переднеприводных автомобилей с продольным и поперечным расположением двигателя

Рисунок 2 — Механические трансмиссии автомобилей с колесными форму­лами 4×2:

а — переднеприводной автомобиль с продольным расположением двигателя; б – переднеприводной автомобиль с поперечным расположением двигателя; 1 — двигатель; 2 — сцепление; 3 — коробка передач; 4 — карданная передача; 5 — ведущий мост или главная передача; 6 — карданный шарнир.

1.3 Схемы трансмиссий колесных и гусеничных тракторов

Рисунок 3 — Схемы трансмиссий тракторов: а — колесный трактор с задними ведущими колесами;

б — колесный трактор с передними и задни­ми ведущими колесами; в — гусеничный трактор; 1 — сцепление; 2 — коробка передач; 3 — главная передача; 4 — дифференциал; 5 — конечная передача; 6 — промежуточное соеди­нение; 7 — разда­точная коробка; 8 — карданная передача; 9 — ведущая звездочка; 10 — механизм поворота.

1.4 Особенности трансмиссии гусеничных тракторов с 2-х поточной трансмиссией

Трансмиссии с разделением потока мощности за главной переда­чей называют однопоточными. Если разделение потока мощности про­исходит в коробке передач, трансмиссию называют двухпоточной.

Рисунок 4 — Схема двухпоточной трансмиссии трактора Т-150:

1- вал заднего хода и ходоуменьшителя; 2 — карданная передача; 3 — задний мост; 4 — главные передачи; 5 — конечная передача; 6 — вторичный вал; 7 — фрикционная муфта; 8 — промежуточ­ный вал; 9 — первичный вал; 10 — коробка передач; 11 — сцепление.

На двухпоточной трансмиссии функции механизма поворота вы­полняет коробка передач: она имеет два вторичных вала 6 (рис. 4), каждый из них приводится от промежуточного вала 8 (для упроще­ния схемы показан один). На вторичных валах 6 установлены фрикци­онные муфты 7 и тормоза ленточного типа, при помощи которых осу­ществляется поворот трактора. Таким образом, фрикционные муфты играют двойную роль — обеспечивают переключение передач и поворот трактора. От вторичных валов 6 крутящие моменты раздельными пото­ками передаются карданными передачами 2 к двум главным переда­чам 4, которые размещены в заднем мосту 5, и далее через конечные передачи 5 к гусеницам.

Применение двухпоточных трансмиссий позволяет при прочих рав­ных условиях уменьшить массу трактора (Т-150).

2 Тесты для самоконтроля по теме общие сведения о трансмиссии

Что такое трансмиссия?

1. Трансмиссией называется силовая передача, осуществляющая связь двигателя с ведущими колесами машины.

2. Трансмиссия это набор агрегатов и узлов, передающих тяговые и тормозные усилия от рамы на ведущие мосты.

3. Трансмиссией называется силовая передача, осуществляющая связь двигателя с ведущими мостами.

Назначение трансмиссии.

1. Трансмиссия изменяет скорость движения и крутящий момент.

2. Трансмиссия увеличивает скорость движения машины.

3. Она служит для передачи от двигателя к ведущим колесам мощности и крутящего момента, необходимого для движения машины.

Общее устройство механической трансмиссии автомобилей.

1. В общее устройство трансмиссии входят следующие основные части: сцепление, коробка передач, карданная передача.

2. В общее устройство трансмиссии входят следующие основные части: главная передача, дифференциал, полуоси.

3. В общее устройство трансмиссии входят основные части, перечисленные в ответах 1 и 2.

Дата добавления: 2018-06-01 ; просмотров: 1551 ; Мы поможем в написании вашей работы!

УСТРОЙСТВО ТРАНСМИССИИ

Трансмиссия предназначена для передачи крутящего момента от двигателя к ведущим колесам автомобиля. Подведенный к колесам крутящий момент создает силу тяги, обеспечивающую движение автомобиля в результате взаимодействия колес с дорогой. Сила тяги затрачивается на преодоление сил сопротивления движению: силы сопротивления качению колес, силы сопротивления воздуху, силы сопротивления подъему, силы сопротивления разгону. Силы сопротивления движению могут меняться в широких пределах в зависимости от условий движения. Соответственно должна изменяться сила тяги на ведущих колесах. Эту функцию также выполняет трансмиссия путем увеличения или уменьшения крутящего момента. Кроме того, трансмиссия позволяет изменять направление крутящего момента с целью обеспечения движения автомобиля задним ходом. Изменение крутящего момента в трансмиссии можно оценивать ее передаточным числом, которым является отношение частоты вращения коленчатого вала двигателя и частоты вращения ведущих колес, без учета потерь энергии в трансмиссии.

В зависимости от предназначения автомобиля и условий его использования крутящий момент может подводиться к колесам только одного моста или к нескольким мостам, так как наибольшая сила тяги может быть реализована при наличии на автомобиле привода ко всем колесам. Для движения по дорогам с твердым покрытием и сухим грунтовым дорогам достаточно двух ведущих колес. В этом случае крутящий момент подводится к передним или задним колесам. Такая схема трансмиссии называется мостовой, а автомобиль — переднеприводным или заднеприводным.

Тип трансмиссии автомобиля определяется колесной формулой, состоящей из двух цифр, где первая цифра обозначает число всех колес, а вторая — число ведущих колес. Наиболее распространенными являются автомобили с колесной формулой 4×2, 4×4, 6×4, 6×6 (рис. 10.1).

Если привод осуществляется на все колеса автомобиля (колесная формула 4×4, 6×6, 8 х 8), то такие автомобили называют полноприводными. Они обладают повышенной или высокой проходимостью и способны двигаться в условиях бездорожья и преодолевать различные препятствия.

На некоторых полноприводных автомобилях крутящий момент может подводиться не к мостам, а к колесам одного борта (рис. 10.2). Такая схема трансмиссии называется бортовой.

Рис. 10.1. Мостовые схемы трансмиссий автомобилей с различной колесной формулой: а, б — 4 х 2; в — 4 х 4; г — 6 х 4; д, е — 6 х 6; ж — 8 х 8; / — двигатель; 2 — сцепление; 3 — коробка передач; 4 — карданная передача; 5 — главная передача; 6 — раздаточная коробка

Читайте также  Кинематическая схема трансмиссии уаз 2206

Бортовые схемы трансмиссий

Рис. 10.2. Бортовые схемы трансмиссий: / — двигатель; 2 — сцепление; 3 — коробка передач; 4 — карданная передача; 5 — раздаточная коробка; 6 — колесный редуктор; 7 — бортовой редуктор

Бортовая схема распределения крутящего момента применяется, когда необходимо обеспечить размещение внутри рамы какого-либо транспортируемого механизма или когда по конструктивным соображениям (например, при схеме ходовой части с равномерным расположением осей по базе) затруднено применение обычной трансмиссии с центральной раздачей крутящего момента. Указанная трансмиссия требует применения разрезных мостов. В такой схеме трансмиссии крутящий момент от двигателя / через сцепление 2, коробку передач 3 передается к раздаточной коробке 5, в которой изменяется направление потока мощности и момент делится симметричным коническим дифференциалом поровну между левым и правым бортом. От раздаточной коробки крутящий момент подводится к бортовым редукторам 7, а от них к колесным редукторам 6.

Трансмиссии с раздачей крутящего момента по колесам одного борта значительно сложнее, чем мостовые, и, кроме того, их нельзя унифицировать по узлам с трансмиссиями массовых неполноприводных автомобилей. Поэтому их применение весьма ограничено.

По характеру связи между двигателем и ведущими колесами трансмиссии разделяют на механические, электрические, гидрообъемные и комбинированные (гидромеханические, электромеханические). Передаваемый трансмиссией на ведущие колеса крутящий момент может изменяться через определенные промежутки или плавно. В связи с этим различают ступенчатые и бесступенчатые трансмиссии. Получившие наибольшее применение в качестве преобразователей крутящего момента обычные вальные коробки передач и раздаточные коробки обеспечивают ступенчатое регулирование силы тяги на колесах. При этом характер получаемой тяговой характеристики далек от идеальной (рис. 10.3, а).

Совершенно другой характер связи между силой тяги на колесах и скоростью движения автомобиля дают бесступенчатые передачи (гидродинамические, гидрообъемные и электрические). Эти передачи обеспечивают преобразование крутящего момента без разрыва потока мощности. Тяговые характеристики автомобилей с такими преобразователями по форме близки к идеальным (рис. 10.3, б).

Рис. 10.3. Тяговые характеристики автомобилей с различными типами трансмиссий: а — ступенчатая; б — бесступенчатая; в — комбинированная; Рк — сила тяги; и — скорость движения

Использование бесступенчатых передач позволяет уменьшить динамические нагрузки на двигатель и трансмиссию, обеспечить плавное трогание автомобиля с места, упростить управления автомобилем, повысить проходимость автомобиля вследствие непрерывного и плавного изменения силы тяги на ведущих колесах. Однако сложность технической реализации и ряд недостатков, связанных с габаритными размерами и высокой стоимостью, сдерживают широкое применение таких трансмиссий.

Кроме того, их недостатком является малый диапазон регулирования крутящего момента. По этой причине бесступенчатые передачи используются в трансмиссиях автомобилей не автономно, а в сочетании с дополнительными механическими редукторами, имеющими 2—4 ступени. Такие трансмиссии называют комбинированными. Характеристика комбинированной передачи приближается к идеальной (рис. 10.3, в).

Как работает роботизированная коробка передач

Скоро привычную ( — в русской версии) переключения передач заменит селектор с таким вот пазом в виде буквы «зю». И тренировать левую ногу в автомобиле будет уже нечем.

Чтобы ответить на этот вопрос, придётся вспомнить устройство обычной механической коробки передач. Основу классической «механики» составляют два вала — первичный (ведущий) и вторичный (ведомый). На первичный вал через механизм сцепления передаётся крутящий момент от двигателя. Со вторичного вала преобразованный момент идёт на ведущие колёса. И на первичный, и на вторичный валы посажены шестерни, попарно находящиеся в зацеплении. Но на первичном шестерни закреплены жёстко, а на вторичном — свободно вращаются. В положении «нейтраль» все вторичные шестерни прокручиваются на валу свободно, то есть крутящий момент на колёса не поступает.

Перед включением передачи водитель выжимает сцепление, отсоединяя первичный вал от двигателя. Затем рычагом КПП через систему тяг на вторичном валу перемещаются специальные устройства — синхронизаторы. При подведении муфта синхронизатора жёстко блокирует на валу вторичную шестерню нужной передачи. После включения сцепления крутящий момент с заданным коэффициентом начинает передаваться на вторичный вал, а от него — на главную передачу и колёса. Для сокращения общей длины коробки вторичный вал часто делят на два, распределяя ведомые шестерни между ними.

Принцип действия роботизированных коробок передач абсолютно тот же. Единственное отличие в том, что смыканием/размыканием сцепления и выбором передач в «роботе» занимаются сервоприводы — актуаторы. Чаще всего это шаговый электромотор с редуктором и исполнительным механизмом. Но встречаются и гидравлические актуаторы.

Управляет актуаторами электронный блок. По команде на переключение первый сервопривод выжимает сцепление, второй перемещает синхронизаторы, включая нужную передачу. Затем первый плавно отпускает сцепление. Таким образом, педаль сцепления в салоне больше не нужна — при поступлении команды электроника всё сделает сама. В автоматическом режиме команда на смену передачи поступает от компьютера, учитывающего скорость движения, обороты двигателя, данные ESP, ABS и других систем. А в ручном — приказ на переключение отдаёт водитель при помощи селектора КПП или подрулевых лепестков.

Проблема «робота» — отсутствие обратной связи по сцеплению. Человек чувствует момент смыкания дисков и может переключить скорость быстро и плавно. А электроника вынуждена перестраховываться: чтобы избежать рывков и сохранить сцепление, «робот» надолго разрывает поток мощности от двигателя к колёсам во время переключения. Получаются дискомфортные провалы на разгоне. Единственный способ достичь комфорта при переключениях — сократить их время. А это, увы, означает рост цены всей конструкции.

Революционным решением стала появившаяся в начале трансмиссия с двумя сцеплениями DCT (dual clutch transmission). Рассмотрим её работу на примере коробки DSG концерна Volkswagen. У коробки два вторичных вала с расположенными на них ведомыми шестернями и синхронизаторами — как у шестиступенчатой «механики» Гольфа. Фокус в том, что первичных валов тоже два: они вставлены друг в друга по принципу матрёшки. Каждый из валов соединяется с двигателем через отдельное многодисковое сцепление. На внешнем первичном валу закреплены шестерни второй, четвёртой и шестой передач, на внутреннем — первой, третьей, пятой и заднего хода. Допустим, автомобиль начинает разгон с места. Включается первая передача (муфта блокирует ведомую шестерню первой передачи). Замыкается первое сцепление, и крутящий момент через внутренний первичный вал передаётся на колёса. Поехали! Но одновременно с включением первой передачи умная электроника прогнозирует последующее включение второй — и блокирует её вторичную шестерню. Именно поэтому такие коробки ещё называют преселективными. Таким образом, включены две передачи сразу, но заклинивания не происходит, — ведущая шестерня второй передачи находится на внешнем валу, сцепление которого пока разомкнуто.

Когда машина достаточно разгонится и компьютер решит повысить передачу, размыкается первое сцепление и одновременно замыкается второе. Крутящий момент теперь идёт через внешний первичный вал и пару второй передачи. На внутреннем валу уже выбрана третья. При замедлении те же операции происходят в обратном порядке. Переход происходит практически без разрыва потока мощности и с фантастической скоростью. Серийная коробка Гольфа переключается за восемь миллисекунд. Сравните со 150 мс на Ferrari Enzo!

Читайте также  Схемы автомобильных генераторов 24 вольта

Коробки с двойным сцеплением экономичнее и быстрее традиционных механических, а также более комфортны, чем «автоматы». Главный их недостаток — высокая цена. Вторую проблему — неспособность передавать большой крутящий момент — решили с появлением DSG фирмы Ricardo на купе Bugatti Veyron. Но пока удел большинства суперкаров — «роботы». Хотя, например, коробка Ferrari 599 GTB Fiorano — не чета опелевскому Изитронику: время переключения у суперробота исчисляется десятками миллисекунд.

Сегодня коробки DCT есть не только у Фольксвагена, но и у компаний BMW, Ford, Mitsubishi и FIAT. Преселективные коробки признали даже инженеры Porsche, которые используют в своих машинах только проверенные технологии. Аналитики прогнозируют, что в будущем наиболее распространёнными трансмиссиями станут DCT и вариаторы. А дни третьей педали, похоже, сочтены — скоро она исчезнет даже из самых драйверских спорткаров. Человечество выбирает то, что удобнее.

Автомат, механика, робот, вариатор: как устроены автомобильные коробки передач

Разобравшись с устройством двигателя, можно смело переходить к его «паре». Ведь двигатель создает мощность, но именно через коробку передач эта мощность начинает путь к колесам авто. Об основных типах «коробок» и их устройстве — в материале Mafin Media.

Различают по ступеням. А точнее — по их наличию

Любая КПП (коробка переключения передач) — это трансмиссия (от англ. transmission — передача), то есть механизм, преобразующий крутящий момент таким образом, чтобы в конечном счете вращать колеса автомобиля. Крутящий момент простыми словами — сила, с которой вращается коленвал двигателя.

Вопреки распространенному суждению, коробки переключения передач делятся не на «механику» и «автомат» (что отчасти верно, но весьма условно), а на ступенчатые и бесступенчатые . Самые популярные как раз ступенчатые: это и механическая КПП, и гидромеханический автомат, и «робот», чаще всего устанавливаемые на легковые авто. Также известны, но менее популярны бесступенчатые вариаторы, знакомые любителям скутеров и квадроциклов.

Механическая коробка передач (MT/МКПП)

Механическая коробка передач

Самый простой и бюджетный тип трансмиссионного устройства — механическая коробка — представляет из себя набор валов (продолговатых металлических цилиндров или трубок) с нанизанными на них шестернями . Шестерня — это зубчатое колесо, передающее движение. В каждой «механике» (прозванной так за рычаг коробки и педаль сцепления, которыми нужно орудовать самостоятельно, совершая механические движения) есть несколько разных шестеренок. Именно они и есть та самая передача , которая транслирует крутящий момент с двигателя на колеса.

Соотношение разных шестерен на разных валах позволяет выбирать разные скорости , причем не только фигурально («передача» и «скорость» — синонимы), но и буквально: каждая передача рассчитана на движение в определенном скоростном диапазоне. Проще говоря, гражданскому авто на «первой» до 100 км/ч не разогнаться.

Для того чтобы передачу можно было сменить, используется сцепление — «головная боль» начинающих водителей. Двигатель и коробка соединяются диском сцепления, который получает мощность от маховика двигателя и передает ее на коробку передач. Диски необходимо соединять и разъединять вручную — а чаще «вножную». Когда водитель нажимает на педаль, он преодолевает сопротивление пружины «корзины» сцепления, отвечающей за соединение и разъединение маховика и диска сцепления.

механическая коробка передач устройство

Гидромеханический автомат (AT/АКПП)

Гидромеханический автомат

Еще лет 30 назад автомобиль с двумя педалями вместо трех был заветной мечтой многих горожан. Гидромеханический автомат подразумевает отсутствие жесткого сцепления между коробкой и двигателем. Появились такие коробки передач позже ручных собратьев: ближе к середине XX века своего первенца представила General Motors.

Гидромеханической трансмиссию называют потому, что переключение передач происходит за счет течения рабочей жидкости внутри механизма. За это отвечает гидротрансформатор — в просторечии «бублик».

гидротрансформатор

Он соединен с двигателем и содержит два лопастных колеса. Благодаря движению через них масла лопастные колеса передают мощность двигателя в АКПП. Поскольку гидротрансформатор забирает часть мощности мотора для раскрутки лопастных колес, динамика и экономичность падают. Однако многие предпочтут потерять пару литров и секунд, но не утомляться ручными переключениями. Первым серийным авто с относительно надежной и долговечной АКПП считается Oldsmobile Series 60 — автомат как опция стал доступен для авто с 1940 модельного года.

Oldsmobile Series 60

Робот (РКПП)

Роботизированная коробка передач

Роботизированная коробка передач названа так потому, что представляет собой электронно управляемую МКПП, где комплекс механизмов и процессоров, которые условно можно назвать роботом, выполняет за водителя работу по переключению. Эти коробки появились лишь в конце XX века.

Первоначально РКПП имели одно сцепление, как и обычная «механика», были дешевле традиционного автомата, обеспечивали меньшую потерю мощности и ставились на машины попроще, например Ford Fusion, Peugeot 107, Opel Corsa и т. д. Переключения выполняли специальные механизмы — сервоприводы . Жесткие, рваные и медленные переключения вкупе с быстрым износом сцепления свели их популярность на нет и передали планку современным собратьям — роботам с двумя сцеплениями .

Большинство из них известно поименно: это Direct Shift Gearbox от VAG (Volkswagen Audi Group), Dual Clutch Transmission от Hyundai/Kia, PowerShift от Ford и т. д. Их главная особенность — наличие двух независимых сцеплений : пока одна передача ведет автомобиль, другая уже включена и ожидает своего соединения с мотором. Это существенно усложняет конструкцию узла, но позволяет избегать задержек и рывков при переключении. Более того, робот с двумя сцеплениями (а иногда даже и с одним) по способности экономить топливо легко потягается с традиционной механикой!

Бесступенчатые трансмиссии (CVT)

CVT

Наиболее популярная бесступенчатая трансмиссия в автомобилестроении — вариатор, или CVT (Continuously Variable Transmission — в пер. с англ. «постоянно изменяющаяся передача»). В отличие от коробок, рассмотренных ранее, фиксированных передач у вариатора нет. Для транслирования мощности от мотора к колесам используется ремень (или цепь), который вращается между двумя шкивами, то есть колесами с выемками-желобами, предназначенными для «надевания» этого ремня. Один из шкивов приводится в движение мотором и потому называется ведущим, а другой — ведомым.

Бесступенчатые трансмиссии

В зависимости от скорости диаметр шкивов меняется и передаточные числа меняются планомерно, без переключений, свойственных ступенчатым коробкам:

Принцип действия вариатора: Принцип действия вариатора:

Первым серийным автомобилем с вариатором считается DAF 600, которому недавно исполнилось 60 лет.

Передачи, их виды: фрикционные, ременные, цепные, зубчатые, червячные

Механическая передача – механизм, превращающий кинематические и энергетические параметры двигателя в необходимые параметры движения рабочих органов машин и предназначенный для согласования режима работы двигателя с режимом работы исполнительных органов. [1]

Типы механических передач:

  • зубчатые (цилиндрические, конические);
  • винтовые (винтовые, червячные, гипоидные);
  • с гибкими элементами (ременные, цепные);
  • фрикционные (за счёт трения, применяются при плохих условиях работы).

В зависимости от соотношения параметров входного и выходного валов передачи разделяют на:

  • редукторы (понижающие передачи) – от входного вала к выходному уменьшают частоту вращения и увеличивают крутящий момент;
  • мультипликаторы (повышающие передачи) – от входного вала к выходному увеличивают частоту вращения и уменьшают крутящий момент.

Зубчатая передача – это механизм или часть механизма механической передачи, в состав которого входят зубчатые колёса. При этом усилие от одного элемента к другому передаётся с помощью зубьев. [2]

Читайте также  Автомобильный генератор с самовозбуждением схема

Зубчатые передачи предназначены для:

  • передачи вращательного движения между валами, которые могут иметь параллельные, пересекающиеся или скрещивающиеся оси;
  • преобразования вращательного движения в поступательное, и наоборот (передача “рейка-шестерня”).

Зубчатое колесо передачи с меньшим числом зубьев называется шестернёй, второе колесо с большим числом зубьев называется колесом.

Зубчатые передачи классифицируют по расположению валов:

  • с параллельными осями (цилиндрические с внутренним и внешним зацеплениями);
  • с пересекающимися осями (конические);
  • с перекрестными осями (рейка-шестерня).

Цилиндрические зубчатые передачи (рисунок 1) бывают с внешним и внутренним зацеплением. В зависимости от угла наклона зубьев выполняют прямозубые и косозубые колёса. С увеличением угла повышается прочность косозубых передач (за счёт наклона увеличивается площадь контакта зубьев, уменьшаются габариты передачи). Однако в косозубых передачах появляется дополнительная осевая сила, направленная вдоль оси вала и создающая дополнительную нагрузку на опоры. Для уменьшения этой силы угол наклона ограничивают 8-20°. Этот недостаток исключён в шевронной передаче.

Основные виды цилиндрических зубчатых передач

Рисунок 1 – Основные виды цилиндрических зубчатых передач

Конические зубчатые передачи (рисунок 2) применяют в тех случаях, когда оси валов пересекаются под некоторым углом, чаще всего 90°. Конические передачи более сложны в изготовлении и монтаже, чем цилиндрические. Нагрузочная способность конической прямозубой передачи составляет приблизительно 85% цилиндрической. Для повышения нагрузочной способности конических колёс применяют колёса с непрямыми (тангенциальными, круговыми) зубьями.

Конические зубчатые передачи

Рисунок 2 – Конические зубчатые передачи

Достоинства зубчатых передач:

  • компактность;
  • возможность передавать большие мощности;
  • большие скорости вращения;
  • постоянство передаточного отношения;
  • высокий КПД.

Недостатки зубчатых передач:

  • сложность передачи движения на значительные расстояния;
  • жёсткость передачи;
  • шум во время работы;
  • необходимость в смазке.

Червячные передачи (рисунок 3) применяют для передачи движения между перекрещивающимися осями, угол между которыми, как правило, составляет 90°. Движение в червячных передачах передается по принципу винтовой пары.

Червячная передача

Рисунок 3 – Червячная передача

В отличие от большинства разновидностей зубчатых в червячной передаче окружные скорости на червяке и на колесе не совпадают. Они направлены под углом и отличаются по значению. При относительном движении начальные цилиндры скользят. Большое скольжение является причиной низкого КПД, повышенного износа и заедания. Для снижения износа применяют специальные антифрикционные пары материалов: червяк – сталь, венец червячного колеса – бронза (реже – латунь, чугун).

Достоинства червячных передач:

  • большие передаточные отношения;
  • плавность и бесшумность работы;
  • высокая кинематическая точность;
  • самоторможение.

Недостатки червячных передач:

  • низкий КПД;
  • высокий износ, заедание;
  • использование дорогих материалов;
  • высокие требования к точности сборки.

Для передачи движения между сравнительно далеко расположенными друг от друга валами применяют механизмы, в которых усилие от ведущего звена к ведомому передаётся с помощью гибких звеньев. В качестве гибких звеньев применяются: ремни, шнуры, канаты разных профилей, провода, стальную ленту, цепи различных конструкций.

Передачи с гибкими звеньями могут обеспечивать постоянное и переменное передаточное отношения со ступенчатым или плавным изменением его величины.

Для сохранности постоянства натяжения гибких звеньев в механизмах применяются натяжные устройства: ролики, пружины, противовесы и т.п.

Различают следующие разновидности передач с гибкими звеньями:

  • по способу соединения гибкого звена с остальными:
    • фрикционные;
    • с непосредственным соединением;
    • с зацеплением;
    • открытые;
    • перекрёстные;
    • полуперекрёстные;

    Ременная передача (рисунок 4) состоит из двух шкивов, закреплённых на валах, и ремня, охватывающего эти шкивы. Нагрузки передается за счёт сил трения, возникающих между шкивами и ремнём вследствие натяжения последнего.

    В зависимости от формы поперечного перереза ремня различают передачи:

    • плоскоременную;
    • клиноременную (получили наиболее широкое применение);
    • круглоременную.

    Ременная передача

    Рисунок 4 – Ременная передача

    Наибольшие преимущества наблюдаются в передачах с зубчатыми (поликлиновыми) ремнями.

    Достоинства ременных передач:

    • возможность передачи движения на значительные расстояния;
    • плавность и бесшумность работы;
    • защита механизмов от колебаний нагрузки вследствие упругости ремня;
    • защита механизмов от перегрузки за счёт возможного проскальзывания ремня;
    • простота конструкции и эксплуатации (не требует смазки).

    Недостатки ременных передач:

    • повышенные габариты (при равных условиях диаметры шкивов в 5 раз больше диаметров зубчатых колёс);
    • непостоянство передаточного отношения вследствие проскальзывания ремня;
    • повышенная нагрузка на валы и их опоры, связанная с большим предварительным натяжением ремня (в 2-3 раза больше, чем у зубчатых передач);
    • низкая долговечность ремней (1000-5000 часов).

    Цепная передача (рисунок 5) основана на принципе зацепления цепи и звёздочек. Цепная передача состоит из:

    • ведущей звёздочки;
    • ведомой звёздочки;
    • цепи, которая охватывает звёздочки и зацепляется за них зубьями;
    • натяжных устройств;
    • смазывающих устройств;
    • ограждения.

    Цепные передачи

    Рисунок 5 – Цепные передачи: а) с роликовой цепью; б) с зубчатой пластинчатой цепью

    Область применения цепных передач:

    • при значительных межосевых расстояниях;
    • при передаче от одного ведущего вала нескольким ведомым;
    • когда зубчатые передачи неприменимы, а ременные недостаточно надёжны.

    По типу применяемых цепей бывают:

    • роликовые;
    • втулочные (лёгкие, но большой износ);
    • роликовтулочные (тяжёлые, но низкий износ);
    • зубчатые пластинчатые (обеспечивают плавность работы).

    Достоинства цепных передач (по сравнению с ременной передачей):

    • большая нагрузочная способность;
    • отсутствие скольжения и буксования, что обеспечивает постоянство передаточного отношения и возможность работы при кратковременных перегрузках;
    • принцип зацепления не требует предварительного натяжения цепи;
    • могут работать при меньших межосевых расстояниях и при больших передаточных отношениях.

    Недостатки цепных передач связаны с тем, что звенья располагаются на звёздочке не по окружности, а по многоугольнику, что влечёт:

    • износ шарниров цепи;
    • шум и дополнительные динамические нагрузки;
    • необходимость обеспечения смазки.

    Фрикционная передача – кинематическая пара, использующая силу трения для передачи механической энергии (рисунок 6). [3]

    Рисунок 6 – Фрикционные передачи

    Трение между элементами может быть сухое, граничное, жидкостное. Жидкостное трение наиболее предпочтительно, так как значительно увеличивает долговечность фрикционной передачи.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: