Схемы стабильных кварцевых генераторов

5.19. Генераторы с кварцевыми резонаторами

От RC-генератора можно легко добиться стабильности порядка 0,1% при начальной точности установки частоты от 5 до 10%. Это вполне удовлетворительно для многих применений, таких, например, как мультиплексный индикатор карманного калькулятора, где цифры многозначного числа подсвечиваются одна за другой с быстрым чередованием (обычная часто – 1кГц). В каждый момент времени горит только одна цифра, но глаз видит все число. Ясно, что точность здесь не очень важна. Несколько лучше стабильность LC-генераторов — порядка 0.01% в течение разумного промежутка времени. Этого вполне достаточно для гетеродинов радиоприемников и телевизоров.

Для получения по-настоящему стабильных колебаний незаменимы кварцевые генераторы. В них используется кусочек кварца (искусственного — двуокись кремния), вырезанный и отшлифованный таким образом, что он имеет определенную частоту колебаний. Кварц представляет собой пъезоэлектрик (его деформация вызывает появление электрического потенциала, и наоборот), поэтому упругие колебания кристалла могут быть вызваны приложением электрического поля, а эти колебания в свою очередь генерируют напряжение на гранях кристалла. Помещая на поверхность кристалла контакты, можно превратить его в истинный схемный элемент, эквивалентный некоторой RLC-схеме, заранее настроенной на определенную частоту. В самом деле эквивалентная схема этого элемента содержит два конденсатора, дающих пару близко расположенных резонансных частот — последовательного и параллельного резонанса (рис. 5.47), отличающихся друг от друга не более чем на 1%. Результат этого эффекта — резкое изменение реактивного сопротивления с частотой (рис. 5.48). Высокая добротность Q кварцевого резонатора (обычно около 10000) и хорошая стабильность делают естественным его Рис. 5.48. применение как задающего элемента в генераторах и фильтрах с улучшенными параметрами. В схемах с кварцевыми резонаторами, как и в LC-генераторах, вводят положительную обратную связь и обеспечивают надлежащее усиление на резонансной частоте, что ведет к автоколебаниям.

На рис. 5.49 показаны некоторые схемы кварцевых генераторов. На рис. 5.49, а показан классический генератор Пирса, в котором используется обычный полевой транзистор (см. гл. 3). На рис. 5.49, б изображен генератор Колпитца с кварцевым резонатором вместо LC-контура. В схеме на рис. 5.49, в в качестве обратной связи используется сочетание биполярного n-p-n — транзистора и кварцевого резонатора. Остальные схемы генерируют выходной сигнал с логическими уровнями при использовании цифровых логических функций(рис 5.49, г и д).

Рис. 5.49. Схемы с кварцевыми резонаторами, а — генератор Пирса, б — генератор Колпитца.

На последней диаграмме показаны схемы кварцевых генераторов, построенные ИС МС12060/12061 фирмы Motorola. Эти микросхемы предназначены для использования, совместно с кварцевыми резонаторами, диапазона частот от 100 кГц до 20 МГц и спроектированы таким образом, что обеспечивают прекрасную стабильность частоты колебаний при тщательном ограничении его амплитуды с помощью встроенного амплитудного дискриминатора и схемотехнического ограничителя. Они обеспечивают формирование выходных колебаний как синусоидальной, так и прямоугольной формы (с ТТЛ и ЭСЛ логическими уровнями).

В качестве альтернативы, а именно в тех случаях, когда достаточно иметь выходное колебание только прямоугольной формы и не предъявляются предельные требования по стабильности, можно применять законченные модули кварцевых генераторов, которые обычно выпускаются в металлических DIP-корпусах. Они предлагают стандартный набор частот например, 1, 2, 4, 5 6, 8 10 16 и 20 МГц), а также «странные» частоты, которые обычно используются в микропроцессорных системах (например, частота 14,31818 МГц используется в видеоплатах. Эти «кварцевые модули тактовой частоты», как правило, обеспечивают точность (в диапазоне температур, напряжений источника питания и времени) только 0,01% (10 -4 ), однако они дешевы (от 2 до 11 Долл.) и вам не приходится строить схему. Кроме того, они всегда дают устойчивые колебания, тогда как при создании собственного генератора этого не всегда удается добиться. Функционирование схем генераторов на кварцевых ректорах зависит от электрических свойств самого кристалла (таких, как последовательный или параллельный режим колебаний, эффективное последовательное сопротивление и емкость монтажа), которые не всегда полностью известны. Очень часто вы можете найти, что хотя ваш самодельный кварцевый генератор и возбуждается, но на частоте, которая не соответствует той, которая указана на кварцевом резонаторе. В наших собственных изысканиях в области схем дискретных кварцевых генераторов бывало всякое.

Кварцевые резонаторы выпускаются на диапазон от 10 кГц до 10 МГц, а у некоторых образцов высокие обертоны доходят до 250 МГц. Для каждой частоты нужен свой резонатор, но для наиболее употребительных частот резонаторы выпускаются серийно. Всегда легко достать резонаторы на частоты 100 кГц, 1, 2, 4, 5 и 10 МГц. Кварцевый резонатор на частоту 3.579545 МГц (стоящий меньше доллара) применяется в генераторе импульсов цветности телевизоров. Для электронных наручных часов нужна частота 32,768 кГц (или 215 Гц), и вообще, часто нужны частоты, равные 2 какой-то степени Гц. Кварцевый генератор можно регулировать в небольшом диапазоне с помощью последовательно или параллельно включенных конденсаторов переменной емкости (см. рис. 5.49, г). Благодаря дешевизне кварцевых резонаторов всегда имеет смысл рассмотреть возможность их применения в тех случаях, когда RС-релаксационные генераторы работают на пределе своих возможностей.

При необходимости стабильную частоту кварцевого генератора можно «подгонять» электрическим способом в небольших пределах с помощью варактора. Такая схема называется УНКГ (управляемый напряжением кварцевый генератор), при этом удается соединить прекрасную стабильность кварцевых генераторов с регулируемостью LC-генераторов. Покупка коммерческого УНКГ, вероятно, является наилучшим решением проблем, возникающих при собственном проектировании. Стандартные УНКГ обеспечивают максимальные отклонения центральной частоты от номинала порядка ±10 -5 — ±10 -4 , хотя имеются образцы с более широким диапазоном (вплоть до ±10 -3 ).

Без особых усилий можно с помощью кварцевого резонатора обеспечить стабильность частоты порядка нескольких миллионных долей в нормальном температурном диапазоне. Применяя схемы температурной компенсации, можно построить температурно-компенсированный кварцевый генератор (ТККГ) с несколько улучшенными параметрами. Как ТККГ, так и некомпенсированный генератор выпускаются в виде готовых модулей разными фирмами, например фирмами Biley, CTS Knights, Motorola, Reeves Hoffman, Statek и Vectron. Они бывают разных габаритов, иногда не больше корпуса DIP или стандартного корпуса для транзисторов ТО-5. Дешевые модели обеспечивают стабильность порядка 10 -6 в диапазоне от 0 до 50°С, дорогие — порядка 10 -7 в том же диапазоне.

Температурно-компенсированные генераторы. Чтобы получить сверхвысокую стабильность, может понадобиться кварцевый генератор, работающий в условиях постоянной температуры. Обычно для этих целей используется кристалл с практически нулевым температурным коэффициентом при несколько повышенной температуре (от 80° до 90 °С), а также термостат, который эту температуру поддерживает. Выполненные подобным образом генераторы выпускаются в виде небольших законченных модулей, пригодных для монтажа и включаемых в приборы, на все стандартные частоты. Типичным модулем генератора с улучшенными характеристиками служит схема 10811 фирмы Hewlett-Packard. Она обеспечивает стабильность порядка 10 -11 в течение времени от нескольких секунд до нескольких часов при частоте 10 МГц.

Если температурная нестабильность снижена до очень малых значений, то начинают доминировать другие эффекты: «старение» кристалла (тенденция частоты к уменьшению с течением времени), отклонения питания от номинала, а также внешние влияния, например удары или вибрации (последнее представляет собой наиболее серьезные проблемы в производстве кварцевых наручных часов). Один из способов решения проблемы старения: в паспортных данных генератора указывается скорость снижения частоты — не более 5·10 -10 в день. Эффект старения возникает частично из-за постепеннее снятия деформаций, поэтому через несколько месяцев с момента изготовления этот эффект имеет тенденцию к устойчивому снижению, по крайней мере для хорошо сделанных кристаллов. Взятый нами за образец генератор 10811 имеет величину эффекта старения не более 10 -11 в день.

В тех случаях, когда стабильность термостатированных кристаллов уже недостаточна, применяются атомные стандарты частоты. В них используются микроволновые линии поглощения в рубидиевом газонаполненном элементе или частоты атомных переходов в пучках атомов цезия в качестве эталонов, по которым стабилизируется кварцевый резонатор. Таким образом можно получить точность и стабильность порядка 10 -12 . Цезиевый стандарт является официальным эталоном времени в США. Эти стандарты вместе с линиями передачи времени принадлежат Национальному бюро стандартов и Морской обсерватории. Как последнее средство для самых точных частот, где нужна стабильность порядка 10 -14 , можно предложить мазер на атомарном водороде. Последние исследования в области создания точных часов сосредоточиваются на технических приемах, использующих «охлажденные ионы», которые позволяют достигать даже еще лучшей стабильности. Многие физики считают, что можно достичь окончательной стабильности 10 -18 .

Схемы стабильных кварцевых генераторов

Изучаю генераторы частоты RC, LC и вот теперь кварцевые как высокостабильные. наткнулся на схемку

так вот я что то не пойму за счет чего подделываются незатухающие колебания. я вижу только что кристалл кварца должен сжаться под действием напряжения в 6В с делителя напряжения R1 и R2 .

решил поэкспериментировать спаял генератор с указанными параметрами транзистор bc847c и С1 = 36пФ и генератор запустился на 3 обертоне ( кварц 20МГц генератор запустился на 60 МГц )

Просьба объяснить принцип работы генератора .

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

SVHKOTOK спасибо. про паразитную емкость перехода что то я не подумал. спасибо

aen вам так же спасибо огромное

Последний раз редактировалось jordan Чт мар 21, 2013 23:44:59, всего редактировалось 1 раз.

Компэл 28 октября приглашает всех желающих принять участие в вебинаре, где будет рассмотрена новая и перспективная продукция компании Traco. Мы подробно рассмотрим сильные стороны и преимущества продукции Traco, а также коснемся практических вопросов, связанных с измерением уровня шумов, промывкой изделий после пайки и отдельно разберем, как отличить поддельный ИП Traco от оригинала.

эта схема ближе к той, что у вас нарисована, но работать будет тоже только на основной гармонике.

Читайте также  Схемы генераторов рено кенго

Хотя это не первые попытки сделать обертонный кварцевый генератор без LC.
Вот хотя бы схема тоже обертонного генератора работающей на третьей гармонике кварца и само собой тоже требует тщательной подстройки и тоже постоянно норовит сорваться на генерирование основной гармоники.
Кварц должен быть гармониковым.
В ней С4 пытаются подобрать так, что бы усиление схемы на частоте третьей гармонике было выше, чем на первой.

Управление лампами накаливания автомобиля – одна из задач, прекрасно решаемых интеллектуальными ключами PROFET+ производства Infineon. Однако, в силу больших пусковых токов при включении ламп, разработка узлов их коммутации на основе этих ключей требует учета всех особенностей и характеристик как самих ламп, так и системы электропитания конкретной модели автомобиля.

это схема работает нормально
ес-но она требует подбора С связи и что с того?
и с какой стати ей "постоянно норовить сорваться на генерирование основной гармоники"?

Артеменко ничего нового здесь не придумал
все взято из внутренностей 174ПС1

_________________
Всё можно наладить,если вертеть в руках достаточно долго!

_________________
В начале жизнь мучает вопросами, в конце — ответами.

_________________
Всё можно наладить,если вертеть в руках достаточно долго!

Сигналы могут формироваться из колебаний основной частоты кварцевого резонатора, подключаемого к входам XI, Х2, или третьей гармоники кварцевого резонатора, выделяемой ДС-фильтром или от внешнего генератора, подключаемого ко входу EFI

_________________
Всё можно наладить,если вертеть в руках достаточно долго!

Здравствуйте! Подскажите пожалуйста студентке как правильно подобрать номиналы емкостей С2 и С1 в данной схеме (предполагается использование кварца на 10 МГц)? Если я возьму С2 и С1, 150пФ и 68пФ соответственно, нормально?

_________________
В начале жизнь мучает вопросами, в конце — ответами.

Миаууу!
Нужно сделать для ATTiny13 внешний тактовый генератор, за неимением такового в нем самом.
Очень хочется просто, компактно, мой взор пал на генераторы пирса, но целую микросхему инверторов ставить не хочется.
Накопал вот такую схему, рисунок Г

Хочу получить 10-16МГц на кварце. Транзистор заменил на кт315Б
Пробовал регулировать резистор R1 от 0 до 22, ничего не заводится.
Нюанс, запускаю без МК. Он без него должен запускаться?
Осциллом смотрю, еле еле, что то шевелится на уровне 0.01В еле различимое.
Что делать, помогите пожалуйста.

Сюда перенес, что бы не повторят то, что уже писали.
Первая схема это генератор Пирса, а вторая генератор Колпитца с ОК.
Вторая схема "заводится" легче, но имеет более маленькое выходное напряжение ВЧ.
Почитайте данную тему с самого начала.

Кварцевый генератор по этой схеме работает как трактор с кварцами от десятков кгц (я запускал на 75 кгц) и до сотни мгц. При питании от 3 вольт и выше.

Емкости конденсаторов как выше писали берут примерно
С=1000/F
Где емкость в пф, а частота в мгц.
Т.е. например для кварца 20 мгц емкости нужно взять 47 пф
До частот 30 мгц нормально работают даже на транзисторе КТ315
У меня при питании 3 вольта стоит резистор R4 300 ом.

Странно, если у Вас не работают.
Не забывайте о входной емкости осциллографа. При использовании его без внешнего делителя входная емкость большинства осциллографов около 30 пф и она вносится в схему если его подключаешь.
На ВЧ это критично.

Только на частотах выше 10 мгц напряжение ВЧ на выходе не превышает 1 вольт и для того, что бы подать все это на логику приходится делать дополнительный усилитель. Транзистор можно КТ368, КТ316, КТ325

Здравствуйте.
Собираюсь делать устройство, в котором используется кварцевый генератор на 14.318 МГц. Такой генератор мне найти не удалось, но нашелся резонатор, на нужную частоту. Можно ли, используя его, сделать генератор? Я представляю себе это в виде отдельной маленькой платки, с 4 проволочными выводами, которая ставится на место этого генератора. Возможно такое сделать?

Сюда перенес.
Схем кварцевых генераторов много.
Вот хотя бы самая простая на первой странице данной темы.

Конденсаторы С3 и С4 поставьте полядка 50 — 70 пф
Транзистор можно даже КТ315
Питание любое.
Напряжение ВЧ на выходе порядка 0,5 — 1 вольт, поэтому что бы получить логические уровни, будет нужен дополнительный усилитель на транзисторе например КТ368 или КТ316 или КТ325.
Про импорт не говорю. Там выбор еще больше.
А можно сразу на логике сделать.

Сделал генератор, работает. На 8МГц, амплитуда около 1,5В, питание 5В. Конденсаторы поставил какие были, 27пф и 33пф что то около того.

Воткнул еще один кт315Б, Базу в выход, между Кол и +5В поставил 1к резистор, Эм посадил на землю. Вроде должен был получиться ключ/усилитель. Но ничего не работает
Параметры у кт315Б сходны с предложенными вами, разве что частота немного поменьше 250МГц.

И как это сразу на логике? Даже если я заменю транзистор на инверторы, амплитуда будет больше 1.5В?

Стабильный генератор прямоугольных импульсов

Генераторы тактовых импульсов (ГТИ) – это своего рода задающие механизмы в большинстве сложных цифровых схем. На выходе ГТИ формируются повторяющиеся с определенной частотой электрические импульсы. Чаще всего они имеют прямоугольную форму. На основе этих колебаний синхронизируется работа всех включенных в устройство цифровых микросхем. За один такт выполняется одна атомарная операция (т.е. неделимая, та, которую нельзя выполнить или не выполнить частично).

Сгенерировать импульсы напряжения можно с различной степенью точности и стабильности. Но чем требовательнее схема к задающей частоте, тем точнее и стабильнее должен быть генератор.

1. Классические (аналоговые) генераторы. Они просты в сборке, но имеют низкую стабильность или генерируют не совсем прямоугольные импульсы. В качестве простейшего примера – LC-контуры или схемы на их основе.

2. Кварцевые (на основе кристаллов кварца). Здесь кварц выступает в качестве высокоизбирательного фильтра. Схема отличается высокой степенью стабильности и простотой сборки.

3. На основе программируемых микросхем (таких как Arduino). Решения тоже формируют стабильные импульсы, но в отличие от кварцевых могут управляться в заданных диапазонах и формировать сразу несколько опорных частот.

4. Автогенераторы. Это управляемые ГТИ, работающие преимущественно с современными процессорами, чаще всего интегрируются непосредственно в кристалл.

Таким образом, на роль стабильных генераторов прямоугольных импульсов в схемотехнике подходят:

  • Кварцевые
  • И программируемые (на основе программируемых микросхем).

Отдельно стоит упомянуть схемы классических одно- и мультивибраторов, работающих с применением логических элементов. Такой класс ГТИ однозначно может применяться в цифровых схемах, так как способен формировать стабильную частоту.

Кварцевый генератор повышенной стабильности

Один из примеров реализации.

Рис. 1. Схема кварцевого генератора

Схема строится на основе кварцевого резонатора и КМОП инвертора по принципу генератора Пирса.

За повышение стабильности отвечают конденсаторы увеличенной емкости Ca и Cb.

Мультивибраторы на основе логических элементов

Простейшая схема мультивибратора выглядит так.

Рис. 2. Схема мультивибратора

Фактически это колебательный контур на основе конденсаторов и сопротивлений. Логические элементы позволяют отсечь плавные фронты увеличения и снижения напряжения при заряде/разряде конденсатора в колебательном контуре.

График формирования напряжений будет выглядеть следующим образом.

Рис. 3. График формирования напряжений

За длительность импульса отвечает конденсатор C1, а за паузу между импульсами – C2. Крутизна фронта зависит от времени реакции логического элемента.

Обозначенная схема имеет один недостаток – возможен режим самовозбуждения.

Чтобы исключить этот эффект применяется еще один дополнительный логический элемент (смотри схему ниже – ЛЭ3).

Рис. 4. С хема мультивибратора

Генераторы на операционных усилителях

Тот же колебательный контур, но с интеграцией ОУ будет выглядеть так.

Рис. 5. Схема колебательного контура

График формирования импульсов на его выходе.

Рис. 6. График формирования импульсов на его выходе

Упомянутая выше схема формирует импульсы, время которых равно времени паузы, что не всегда должно быть так.

Внести асимметрию в частоту генерации можно следующим образом.

Рис. 7. Схема генератора импульсов

Здесь время импульсов и паузы между ними определяют различные номиналы резисторов.

Генератор на основе NE555

Микросхема NE555 – это универсальный таймер, способный работать в режиме мульти- или одновибратора.

Существует множество аналогов этой микросхемы: 1006ВИ1, UPC617C, ICM7555 и др.

Один из простых вариантов построения генераторов стабильных прямоугольных импульсов с возможностью подстройки частоты можно увидеть ниже.

Рис. 8. Вариант схемы генератора стабильных прямоугольных импульсов

Здесь в схему включаются различные конденсаторы (C1, C2, C3, их может быть и больше), и подстроечные резисторы (R2,R3, а R4 отвечает за уровень выходного тока).

Формула расчета частоты выглядит следующим образом.

Генератор на основе Arduino мы рассмотрим в отдельной статье.

Мнения читателей
  • Alex / 04.11.2019 — 10:17

На рис. 8 забавно включен светодиод LED1, без токоограничения.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Схемы стабильных кварцевых генераторов

Появление в 1997 программируемых кварцевых генераторов фирмы Epson обозначило наступление новой эпохи в технологии производства кварцевых генераторов. Вместо выпуска огромного ассортимента изделий с различными рабочими частотами, напряжениями питания и диапазонами рабочих температур появилась возможность использовать всего несколько стандартных функционально законченных генераторов, а многочисленные их вариации по основным электрическим параметрам обеспечивать уже программным путем на этапе поставки продукции или даже непосредственно у заказчика.

Многолетний опыт поставок программируемых кварцевых генераторов показал, что широкому их распространению в значительной степени препятствует практически полное отсутствие информации об этих изделиях. До сих пор большинство разработчиков электронной техники с удивлением воспринимают даже само словосочетание «программируемые кварцевые генераторы» и совершенно не представляют себе как возможности, так и недостатки этих изделий.

Рис. 1. Блок-схема программируемого кварцевого генератора

Что же представляют собой программируемые кварцевые генераторы? И как вообще могут совмещаться два этих на первый взгляд несовместимых понятия — «кварцевый генератор» и «программируемый»?

Читайте также  Схемы включения автономных генераторов

Достаточно только на время отвлечься от слова «генератор». На самом деле эти изделия представляют собой синтезатор частоты с кварцевой стабилизацией. И название «генератор» было присвоено изделиям для того, чтобы подчеркнуть их место на рынке электронных компонентов. В большинстве случаев стандартный кварцевый генератор с фиксированной частотой может быть свободно заменен программируемым аналогом. Поэтому в дальнейшем мы будем придерживаться терминологии, предложенной фирмой Epson для изделий этого семейства.

Принцип работы

Блок-схема программируемого кварцевого генератора семейства SG-8002 представлена на рис. 1.

В состав микросхемы входит кварцевый генератор опорной частоты 25 МГц, делитель частоты с коэффициентом деления 1/Q, фазовый детектор, ГУН, делитель частоты с коэффициентом деления 1/P, однократно программируемое ЭППЗУ и управляемые выходные каскады. Фазовый детектор, ГУН и делитель 1/P образуют цепь фазовой автоподстройки частоты. На фазовый детектор поступает поделенный по частоте в Q раз сигнал с опорного кварцевого генератора и поделенный в P раз сигнал с ГУН. Фазовый детектор производит сравнение фаз этих двух сигналов и управляет ГУН таким образом, чтобы сохранялась постоянная разность фаз сигналов этих источников.

Таким образом, выходная частота ГУН будет составлять fVCO = fREF*P/Q, а ее стабильность определяться только стабильностью частоты опорного кварцевого генератора. При этом, в зависимости от соотношения коэффициентов деления P и Q выходная частота может быть как выше, так и ниже частоты опорного генератора. Значение опорной частоты совместно с коэффициентами деления P и Q определяют сетку допустимых выходных частот генератора. При соответствующей разрядности счетчиков шаг этой сетки может быть сделан достаточно малым. Кроме того, для обеспечения генерации выходной частоты с максимально возможной точностью осуществляется дополнительная подстройка опорного генератора путем подключения к нему одного или нескольких конденсаторов, входящих в состав микросхемы.

Перед окончательным поступлением на выход генератора сигнал с ГУН проходит через делитель частоты на 2 для обеспечения симметрии выходного сигнала, а также через программируемые цепи сдвига уровня, обеспечивающие работу генератора с ТТЛ- или КМОП-нагрузкой.

Программирование

Все микросхемы серии SG-8002 имеют только четыре вывода, которые используются и для программирования генераторов. Программирование осуществляется по разработанной фирмой Epson технологии при помощи специального программатора и под управлением программы, установленной на IBM-совместимом компьютере.

После введения исходных данных о необходимой частоте генерации, ее стабильности, диапазоне рабочих температур и конфигурации выходного каскада осуществляется проверка введенных данных на совместимость с возможностями заданного типа кварцевого генератора. В случае успешной проверки выдается приглашение к записи. После установки генератора в панельку программатора можно начинать программирование. Весь цикл записи осуществляется автоматически и состоит из нескольких этапов.

На первом этапе на вывод 1 (вход управления выходным каскадом) подается отрицательное напряжение, переводящее микросхему в режим программирования.

На следующем этапе осуществляется контроль выходной частоты. Для незапрограммированного генератора выходная частота должна равняться частоте колебаний опорного генератора. При значительном отклонении выходной частоты от штатного значения дальнейшее программирование прекращается и выдается сообщение об ошибке. Если измеренное значение частоты не выходит за допустимые границы, то, исходя из результата измерения и необходимого значения частоты генерации, программа принимает решение о необходимости коррекции опорной частоты для достижения максимальной точности. Подгонка частоты кварцевого опорного генератора становится возможной благодаря наличию встроенного набора конденсаторов. В ходе программирования осуществляется подключение или отключение необходимых конденсаторов.

Таблица 1. Основные электрические параметры генераторов семейства SG-8002

Далее программируются коэффициенты деления двух делителей частоты и цепи сдвига уровня в выходном каскаде. Затем вывод микросхемы OUT, который до сих пор служил входным, программируется как только выходной. Таким образом блокируется любая возможность случайного перепрограммирования генератора в ходе его дальнейшей эксплуатации.

После окончания программирования проверяются и выводятся на экран основные параметры генератора: выходная частота, измеренная при комнатной температуре, потребляемый ток в рабочем режиме и режиме покоя, уровни выходного напряжения. Если по этим параметрам микросхема отвечает требованиям заказчика, то на этом ее программирование заканчивается.

Конструктивное исполнение

Генераторы семейства SG-8002 выпускаются в пяти вариантах исполнения — три варианта для поверхностного монтажа (SG-8002JA/JC/JF)и два — для монтажа в отверстия печатной платы (SG-8002DB/DC). Типы корпусов и расположение выводов полностью соответствуют стандартным широко распространенным сериям генераторов SG-51, SG-531, SG-615, SG-636 и SG-710. Все они выпускаются по единой технологии и практически не различаются по своим электрическим параметрам. Этим достигается максимальная степень взаимозаменяемости генераторов в существующей и вновь разрабатываемой аппаратуре.

Таблица 2. Конфигурации программирования выходного каскада

В таблице 1 приведены основные электрические параметры генераторов семейства SG-8002. Эти генераторы различаются только параметрами программирования. Возможны 6 вариантов программирования выходного каскада: PT/ST для работы в 5-вольтовых цепях с ТТЛ-нагрузкой, PH/SH для 5-вольтовых цепей с КМОП-нагрузкой и PC/SC для 3,0–3,3-вольтовых КМОП-цепей.

Кроме того, в вариантах PT, PH и PC вывод 1 микросхемы OE (Output Enable) программируется для управления выходным каскадом микросхемы, а в вариантах ST, SH и SC вывод 1 ST (STtandby) используется для перевода микросхемы в режим покоя. Разница этих двух режимов состоит в том, что в режиме OE при подаче на вход 1 низкого логического уровня выход микросхемы переводится в высокоимпедансное состояние, в то время как оставшиеся цепи микросхемы продолжают полностью функционировать. В режиме ST при подаче на вход 1 низкого логического уровня работа микросхемы полностью прекращается, и выход соединяется с общим проводом через высокоомный резистор. В таком режиме покоя ток, потребляемый микросхемой от источника питания, уменьшается приблизительно на три порядка и не превышает 50 мкА. Платой за это является продолжительный выход микросхемы на рабочий режим после подачи на вывод ST высокого логического уровня. Это время составит около 10 мс и будет ровно таким же, как и при подаче напряжения питания на микросхему. Если вы не планируете использовать какой-либо из вариантов отключения генератора, то вывод 1 можно соединить с положительным выводом источника питания или оставить не присоединенным. В состав микросхемы уже входит резистор номиналом порядка 30 кОм, подключенный между выводами 1 (OE/ST) и 4 (VDD). При этом при подаче на вход 1 низкого уровня номинал этого резистора увеличивается приблизительно в 10 раз для уменьшения протекающего на входе тока.

Все возможные конфигурации программирования выходного каскада приведены в таблице 2.

Несколько слов о программировании рабочей частоты генератора. Поскольку технология производства генераторов семейства SG-8002 является закрытой технологией фирмы Epson, то информация о разрядности делителей частоты, диапазон перестройки опорного кварцевого генератора и подробный алгоритм программирования никогда не публиковались в открытых источниках. Поэтому практически невозможно заранее вычислить сетку допустимых частот программирования. Более того, в рамках одного и того же типа генератора происходит периодическая их модернизация, направленная на повышение допустимой точности.

Таблица 3. Варианты программирования генераторов семейства HG-8002DC/JA

В результате сетка допустимых частот программирования имеет шаг от 2 Гц до 100 Гц. Поэтому если вас устраивает допустимая стабильность частоты ±100ґ10-6 в диапазоне рабочих температур –20. +70 °C, то в этих пределах точности можно запрограммировать практически любую рабочую частоту.

Если вам необходима стабильность ±50ґ10-6 или работа генератора в диапазоне рабочих температур –40. +85 °С, то предварительно желательно выяснить возможность программирования вашей конкретной частоты. Для этого вы можете прислать нам заявку или самостоятельно проверить эту возможность на сайте фирмы Epson ( www.epson.co.jp/device/ crystal/sg8000 ).

Основные преимущества и недостатки программируемых кварцевых генераторов

Основное преимущество программируемых кварцевых генераторов семейства SG-8002 состоит в том, что они могут быть запрограммированы на конечном этапе поставки или же — при большом объеме потребления — непосредственно самим заказчиком. Поэтому вместо широкого ассортимента выпускаемой продукции и независимо от требований заказчика фирма-производитель обеспечивает производство всего пяти «чистых» незапрограммированных генераторов в различных вариантах корпусов. Генераторы могут быть в достаточном количестве накоплены на складах поставщиков или самого заказчика и программироваться под конкретные требования по мере необходимости. Это значительно сокращает сроки поставки необходимых вариантов генераторов и позволяет быстро решить проблемы, связанные с изменением параметров генераторов в ходе работы над проектом. Кроме того, не представляет проблем и использование рабочей частоты, не попадающей в сетку стандартных частот генераторов других производителей.

Одновременно сам принцип работы программируемого генератора налагает ряд ограничений на возможные области его применения. Генератор с внутренними цепями фазовой автоподстройки частоты необходимо с предельной осторожностью применять в схемах, содержащих внешние цепи ФАПЧ. Повышенный уровень фазовых шумов генератора может привести к нарушению работоспособности цепей ФАПЧ. Такие же проблемы могут возникнуть при использовании программируемого генератора в качестве опорного в схемах спектроанализаторов.

Но, несмотря на это, в подавляющем большинстве применений программируемые кварцевые генераторы могут без проблем использоваться вместо стандартных генераторов с фиксированной частотой.

Прецизионные программируемые кварцевые генераторы

На рынке программируемых генераторов появилось новое семейство HG-8002, которое выпущено на основе технологических и схемотехнических решений, использовавшихся ранее при разработке семейства SG-8002, и поэтому обладает теми же электрическими параметрами. Единственное отличие генераторов — они выпускаются в данный момент только в двух типах корпусов (DC и JA) и могут быть запрограммированы с тремя градациями по стабильности частоты AV: ±20ґ10-6, –20. +70 °C; BV: ±25ґ 10-6, –20. +70 °C; CX: ±30ґ10-6, –40. +85 °C. Долговременная стабильность частоты для всех генераторов семейства HG-8002 не превышает ±2ґ10-6/год. Полный ассортимент генераторов семейства HG-8002 представлен в таблице 3.

Дальнейшие перспективы развития программируемых кварцевых генераторов

Параметры кварцевых генераторов

Кварцевый генератор – электронный прибор, состоящий из кварцевого резонатора и схемы генератора, который обеспечивает генерацию на выходе схемы периодического сигнала определенной формы на рабочей частоте. Температурно-частотная характеристика кварцевого генератора, в основном определяется характеристиками используемого кварцевого резонатора.

Тактовый кварцевый генератор – генератор, стабилизированный кварцем, формирующий на выходе периодический цифровой сигнал, предназначенный для управления логическими схемами.

Читайте также  Изобразить схемы различных типов трансмиссий автомобиля

Кварцевый генератор, управляемый напряжением (ГУН) – генератор, стабилизированный кварцем, частоту которого в определенных пределах можно изменить воздействием управляющего напряжения согласно определенной зависимости.

Термокомпенсированный кварцевый генератор – генератор, который имеет высокую температурную стабильность за счет аналогового или цифрового метода компенсации температурно-частотной характеристики кварцевого резонатора.

Термокомпенсированный кварцевый генератор, управляемый напряжением – термокомпенсированный кварцевый генератор, частоту которого в определенных пределах можно изменить воздействием управляющего напряжения согласно определенной зависимости.

Параметры частоты

Номинальная частота – частота Fн, указанная на маркировке или в документации на кварцевый генератор (измеряется в МГц или кГц).

Рабочая частота – реальная частота генератора F, измеренная в реальных условиях эксплуатации (климатических, механических и электрических). Обычно определен только допустимый диапазон изменения рабочей температуры.

Отклонение частоты в интервале рабочих температур – относительное отклонение рабочей частоты кварцевого генератора от номинальной частоты. Определяется по формуле (7). Учитывает все условия, влияющие на изменение частоты выходного сигнала.

Параметры температуры

Диапазон рабочих температур – диапазон температур, для которого производитель гарантирует, что максимальное отклонение рабочей частоты от номинального значений не выходит за пределы заданного допуска.

Диапазон температур хранения – диапазон температур, в котором кварцевый генератор может находиться в режиме хранения (то есть, при отсутствии питающих напряжений). После окончания хранения генератора и обеспечения температуры в пределах рабочего диапазона (в течение некоторого отрезка времени), генератор формирует периодический сигнал на выходе, причем при этом будут гарантироваться все указанные производителем параметры.

Электрические параметры

Напряжение питания – входное напряжение, необходимое для работы генератора, заданное в вольтах (В).

Потребляемый ток – суммарный ток, потребляемый генератором, зависящий от напряжения питания и частоты, заданный, как правило, в миллиамперах (мА).

Логические уровни – в узком смысле, значения напряжений логической единицы и логического нуля сигналов на входе и выходе генератора. В широком смысле – совместимость входов и выходов генератора с определенными сериями логических схем (ТТЛ, КМОП, HCMOS ).

Нагрузка – применительно к логическим схемам серии КМОП – максимальная суммарная емкость нагрузки. Применительно к схемам серии ТТЛ – количество вентилей, которые можно подключить к выходу генератора (нагрузочная способность выхода).

Тристабильный выход – выход с третьим состоянием. Возможность выхода генератора находиться в рабочем состоянии с высоким выходным сопротивлением. Высокое выходное сопротивление эквивалентно размыканию связи между выходом и нагрузкой.

Симметричность – параметр, характеризующий отношение длительности единичного импульса к периоду сигнала, выраженное в процентах. Задается в виде отклонения от номинального (чаще всего 50%) значения – например ±10%.

Длительность фронтов — интервал, необходимый для нарастания (длительность переднего фронта) сигнала от 10 до 90% его максимальной амплитуды или спада (длительность заднего фронта) сигнала от 90 до 10% максимальной амплитуды.

Время запуска – время, измеренное с момента первоначальной подачи питания на генератор до момента установления стабильных колебаний с оговоренной точностью.

Время включения – Время, измеренное с момента подачи разрешающего сигнала на вход управления выходом (третьим состоянием) до момента установления стабильных колебаний с оговоренной точностью.

Специфические параметры генераторов, управляемых напряжением

генератора при помощи управляющего напряжения.

Линейность подстройки частоты – отношение приращения частоты выходного сигнала генератора от величины приращения управляющего напряжения (ppm/volt) в пределах заданного диапазона управляющего напряжения генератора. То есть, мера отклонения от идеальной (прямая линия) функции, которая обычно выражается как допустимая нелинейность в процентах.

Управляющее напряжение – диапазон напряжений, подаваемых на управляющий вход Гунна, обеспечивающий изменение частоты во всем диапазоне подстройки.

Высокочастотный генератор для проверки кварцевых резонаторов

В радиолюбительской практике довольно часто возникает необходимость в управляемом генераторе высокой частоты, например для проверки пьезокерамических и кварцевых резонаторов. В статье будет рассмотрена схема генератора высокой частоты с регулируемой частотой до 80 МГц. Ранее мы уже писали о том, как проверить кварцевый резонатор, теперь вашему вниманию предлагается еще один вариант устройства для проверки кварцевых резонаторов. Отличия в схемах конечно же есть, есть и разница в функциональности, одним словом выбирать вам.

Схема генератора высокой частоты

В качестве задающего генератора выступает цифровая интегральная микросхема DD1 типа КР531ГГ1. По сути, микросхема представляет из себя два управляемых генератора. Рабочая частота этих управляемых генераторов определяется подключенными к выводам С1 и С2 генератора кварцевыми или пьезокерамическими резонаторами, конденсаторами. В рассматриваемой схеме генератора высокой частоты задействован только первый генератор микросхемы. Для облегчения запуска генератора с пьезокерамическими резонаторами, рабочая частота которых менее 4 МГц, параллельно с ним к выводам С1, С2 подключается резистор R1.

Возбуждение проверяемых резонаторов будет происходить на частоте основного резонанса, то есть на частоте первой гармоники. Необходимо это учитывать при выполнении проверки резонаторов, которые предназначены для работы в радиопередающих и радиоприемных устройствах. Для примера, гармониковые кварцы с рабочей частотой 27 МГц (третья гармоника) будут входить в возбуждение соответственно на частоте 9 МГц. Делитель частоты на 2 и 4 собран на микросхеме DD2.

Сигнал высокой частоты с выхода F задающего генератора DD1.1 через токоограничивающий резистор R2 поступает на вход С (вывод 3) триггера DD2.1, а в последствии деленный на 2, с выхода этого D-триггера сигнал с уже вдвое меньшей частотой, чем частота задающего генератора попадает на второй триггер микросхемы DD2.1, который включен аналогичным образом. Таким образом, на выходе делителя частоты мы получаем сигнал частота, которого в 4 раза меньше, чем частота задающего генератора.

О том, что проверяемый резонатор возбуждается сигнализирует светодиод HL2. В качестве буферных элементов используется микросхема DD3. Что позволяет повысить стабильность работы DD1, DD2, устранив влияние подключенной нагрузки. К генератору высокой частоты для мониторинга можно подключить частотомер, который способен производить измерения сигналов частота которых не меньше 80 МГц. Можно также на подключенный частотомер подавать сигналы от задающего генератора DD1, или уже с делителя с частотой в 2 или 4 раза меньшей, что может быть полезно, когда применяется выносной щуп частотомера и соединительный кабель, имеющий недостаточную полосу пропускания.

Питание примененных в генераторе интегральных цифровых микросхем осуществляется от источника стабилизированного напряжения, собранного на стабилизаторе DA1. В целом генератор довольно экономичный, так при работе генератора на частоте 50 МГц он потребляет по цепи питания ток около 100 мА. О наличии напряжения питания сигнализирует светодиод HL1. Для защиты устройства от подачи питания обратной полярности служит диод VD1.

Внешний вид готовой платы:

Плата генератора высокой частоты

В первом варианте готового устройства монтаж велся навесным способом, соединение производилось тонким монтажным проводником, а весь слой фольги был использован как общий провод. Следует быть очень внимательным при разводке сигнальных цепей и цепей питания, так как высокочастотные микросхемы серий КР531, 74F при неудачно выполненном монтаже способны генерировать помехи с довольно широким спектром частот.

Детали. Взамен микросхемы КР531ГГ1 можно использовать КР1531ГГ1, К531ГГ1П. Вместо импортной микросхемы MC74F74N можно использовать любую из серии 74F74N или заменить отечественной КР531ТМ2. Если внести небольшие изменения в принципиальную схему, можно взамен этой микросхемы использовать делитель на 10, как вариант, собранный на микросхеме КР531ИЕ9. Микросхему MC74F00N можно заменить на любую из серии 74F00N или на отечественный аналог КР531ЛАЗ, КР1531ЛАЗ. Следует отметить, что при применении отечественных микросхем ток, потребляемый устройством, может незначительно возрасти.

Если возникнут сложности в приобретении таких микросхем, вместо DD2 и DD3 можно временно установить подходящие микросхемы серии КР1533, но надо иметь ввиду, что диапазон частот кварцевого резонатора при этом снизится до 50. 70 МГц. Стабилизатор на напряжение +5 В типа L7805ACV может быть заменен на любой из серии 7805 или отечественную интегральную микросхему КР142ЕН5А или КР142ЕН5В. Следует учесть, что некоторые стабилизаторы напряжения имеют нижнюю границу минимального напряжения от 7 В до 8 В.

Следуя рекомендациям микросхему стабилизатора напряжения следует устанавливать на небольшой теплоотвод. Вместо диода 1N4001 можно использовать аналогичный из серий КД243, КД226. Диоды 1N4148 могут быть заменены на диоды серий КД409, КД503, 2Д419. К светодиодам особых требований не предъявляется, подойду светодиоды общего применения любого типа. Конденсаторы оксидного типа К53-19, К53-30, К50-35 или их импортные аналоги. Неполярные — керамические конденсаторы К10-17 или аналогичные импортного производства. Можно использовать любые малогабаритные резисторы, например самые распространенные — МЛТ.

Для того, чтобы можно было проверять резонаторы с разным диаметром контактов следует предусмотреть две различные панельки. Длина проводов от выводов С1, С2 микросхемы DD1 должна быть минимальной. Для изменения диапазона рабочих частот генератора от 760 кГц до 12МГц вместо кварцевого резонатора ZQ1 к панелькам необходимо подсоединить конденсатор переменной емкости 20 — 540 пФ. Кроме этого высокочастотный генератор можно доработать, если вместо кварцевого резонатора ZQ1 будет установлен частотозадающий конденсатор, выход F DD1.2 соединить с входом Uc (вывод 2) или Uд (вывод 3) DD1.1, вход Е DD1.2 необходимо соединить с общим проводом, а к выводам С1 и С2 DD1.2 подсоединить конденсатор емкостью 0,22 мкФ.

Генератор DD1.2, после таких доработок, будет работать с частотой 2 кГц, а на выходе 7 DD1, получим частотно-модулированный сигнал. Кроме сказанного, на входы Uд и Uc одновременно можно подать противофазные модулирующие сигналы, как вариант, с выхода 6 инвертора DD3.1 и выхода 7 DD1. А вот для уменьшения девиации частоты эти модулирующие сигналы следует подавать через подстроечные резисторы 220. 470 Ом. Кроме кварцевых или пьезокерамических резонаторов можно подключать и пьезокерамические фильтры. Высокочастотный генератор можно использовать помимо проверки кварцевых резонаторов и, например как калибратор, генератор звуковых эффектов, микропередатчик, устройство для измерения емкости конденсаторов.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: