Схемы генераторов с плавающей частотой

Arduino.ru

Возникла необходимость в генераторе «плавающей» частоты.

На одном выходе должна быть частота 10кГц-20кГц, изменение частоты должно наростать в течение 1 секунду от 10кГц до 20кГц, одновременно на другом выходе должно происходить обратное от 20кГц до 10кГц. Процесс бесконечный, начинается с включения питания.

Пытался взять за основу сирену

Если кто-то делал подобное, поделитесь скетчем с пенсионером :)

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Немного не верно написал.

На одном выходе частота втечение 1 секунды изменяется от 10кГц до 20кГц и снова от 20кГц до 10кГц, а на втором выходе обратная картина, от 20 до 10 и обратно от 10 до 20.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

dimax аватар

Kollega, это довольно непростая задача. Фактически нужно задействовать 3 таймера, на одном считать время (или использовать millis() ) , а на ещё 2х сделать 2 генератора. На 16-битном таймере не проблема, Он может считать отрезками по 0,0625 us, то есть на диапазон 10kHz-20kHz выпадет на 800. 400 отсчётов таймера, вполне плавно. А на оставшимся 8-битном таймере плавной регулировки просто так уже не сделать, тут придётся мудрить что-то..

Вот для одного выхода -довольно просто сделать :)

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Да, dimax, вот по этому и не получается у меня. Я думал может у кого-то есть решения, но наверное нет. Вся затея в том, чтобы ограничиться одной ардуинкой, конечно если пристроить генераторы, то проблем нет, но нужно именно одной. :)

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

SU-27-16 аватар

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

dimax аватар

Kollega, ну как же нет решения? Я вам его написал в общих чертах. Но привёл информацию для мк типа ардуино-уно, т.к. я только с ними работаю. Но возьмите ардуино- леонардо (микро) или ардуино-мега 2560, там по нескольку 16-битных счётчиков, без проблем реализуете свою задумку.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Есть готовая библиотека позволяющая на ATmega168/328 генерировать до 3 независимых частот одновременно с использованием таймеров — т.е. во время генерации может исполняться другой код не задействующий таймеры. А при двух частотах таймер 0 свободен и можно использовать и millis(), micros() и ШИМ.

Сама библиотека от того же автора что и функция tone() в стандартном наборе.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

или есть библиотека

многозадачность на основе таймера 2

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Спасибо Всем за полезную инфу, приму к сведению!

Вопрос решился немного по другому, на первом выходе действительно нужна была плавающая частота, а на втором достаточно было только постоянную середину между 10кГц и 20, т.е. 15кГц, поэтому работает на втором выходе функция tone с постоянной частотой.

В заблуждение иногда вводит proteus, не всегда корректно в нем работает то, что нормально на железе, и наоборот.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Снова столкнулся с проблемой. Частота у меня сейчас меняется в течение секунды от низкой к высокой и обратно.

Но не могу прикрутить к скетчу функцию котроля заряда батареи. По принципу, если батарея разряжена на 50%, то зажигается светодиод. Отдельно такой скетч работает, а как совместить, не разберусь.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

dimax аватар

Kollega, а где вы позаимствовали такую форму детектора напряжения? Он конечно будет работать, только идеологически неверно использовать цифровой вход для контроля уровня напряжения, для этого есть ацп или компаратор. И по первому скетчу -генерировать частоту в функции loop это очень плохая затея, меандр будет очень нестабилен, и любое изменение скетча сразу вызовет уход всех ваших настроек, . Вот набросал, посмотрите. На выводе D9 генератор качающейся частоты 10..20кГц, вывод неизменяем. Вывод 13 -светодиод, вывод A1 -вход для измерения напряжения, к нему подключите ваш делитель. Задействовано 2 таймера, таймер 1 генерит сигнал, от 10 до 20кГц с дискретностью 25 Гц., А что бы удобно обслуживать регулировку частоты используется таймер 2, он 400 раз в секунду вызывает прерывание, в котором увеличивается или уменьшается значение регистраOCR1 на единицу, и сответственно меняется частота на 25Гц. Порог срабатывания светодиода задаётся в строке 24.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Здравствуйте, dimax! Респект Вам и Уважуха, что отвечете мне и не отправляете, как на многих форумах сначала в гугел, потом в «автошколу» :).

Радиолюбительством я занимался с детства, еще с семидесятых, в восьмидесятых работал на радиозаводе. Но в те времена был «аналог», сейчас времена и технологии совершенно другие. Меня вот на пенсии снова потянуло к паяльнику и запаху канифоли. Я раньше понятия не имел, что такое arduino, случайно в иннете наткнулся на рекламу, когда искал осциллограх.

Тема показалась интересная, теперь пытаюсь постигать азы.

Еще раз Спасибо Вам!

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Kollega, а где вы позаимствовали такую форму детектора напряжения? Он конечно будет работать, только идеологически неверно использовать цифровой вход для контроля уровня напряжения, для этого есть ацп или компаратор. И по первому скетчу -генерировать частоту в функции loop это очень плохая затея, меандр будет очень нестабилен, и любое изменение скетча сразу вызовет уход всех ваших настроек, . Вот набросал, посмотрите. На выводе D9 генератор качающейся частоты 10..20кГц, вывод неизменяем. Вывод 13 -светодиод, вывод A1 -вход для измерения напряжения, к нему подключите ваш делитель. Задействовано 2 таймера, таймер 1 генерит сигнал, от 10 до 20кГц с дискретностью 25 Гц., А что бы удобно обслуживать регулировку частоты используется таймер 2, он 400 раз в секунду вызывает прерывание, в котором увеличивается или уменьшается значение регистраOCR1 на единицу, и сответственно меняется частота на 25Гц. Порог срабатывания светодиода задаётся в строке 24.

У меня еще такой вопрос. Просимулировал в proteus_е, получается, что время изменения частоы несколько секунд. Мне не обходимо время от низкой к высокой и обратно за одну секунду. Подскажите, каким образом изменить время, и как можно изменить верхнюю и нижнюю частоту, и как можно зафиксировать (на время настройки верхнюю и нижнюю частоту, по тому, что proteus не успевает считывать.)

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

dimax аватар

Kollega, Думаю вы не правильно что-то задали в протеусе. Возможно татовую частоту. (Я не пользуюсь этой прогой, так что не скажу точно) Время считается так — частота процессора (16 000 000 ) / делитель (задано 256), = тактовая частоту таймера, т.е. 62500Гц. Переведём их сразу в секунды для удобства, 1/62500 = 16uS. Далее в 6 строке скетча задаётся количество тактов, которые нужно пропустить перед прерыванием. 16 * 155= 2480 uS. Т.е. каждые 2,48 ms запускается прерывание. Цикл увеличения или уменьшения частоты состоит из 400 прерываний, 2,48 * 400 =992 миллисекунды . Если хотите за секунду и увеличить и уменьшить, то придётся поменять делитель на /1024 TCCR2B=(1<<CS20)|(1<<CS21) |(1<<CS20) ; и задержку OCR2A=20;

Проверяем: 16 000 000 / 1024 = 15 625 ; 1/15 625 = 64us ; 64*20= 1280us прерывание. Нам нужно сделать их 800 за секунду, 1280*800 = 1,024 s

Зафиксировать частоту -закомментируйте тело прерывания или можно только 16 и 17 строчку.

Изменить частоту — в регистре OCR1A записывать другие значения, рассчитывать можно по аналогии, делитель там 1.

Генератор качающейся частоты на AD9850

Доводилось ли вам когда-либо настраивать фильтры? А лазать по каскадам, выискивая, в котором происходит завал частоты? А делать всё это, не имея при этом измерителя АЧХ? Мне вот доводилось и не раз, штука, скажу я вам, крайне неприятная.

На выручку, конечно, приходят конструкции генераторов из старых журналов радио, но как показала практика, у них целый ряд недостатков, с которыми мирится попросту невозможно, а именно: очень маленький диапазон перестройки, очень узкая полоса качания, нестабильность частоты на ВЧ, слишком высокий нижний предел частоты (ЗЧ не покачаешь), точность установки частоты и диапазона качания желает лучшего, габариты и энергопотребление… ну и те..де…

Одним прекрасным утром меня такой расклад перестал устраивать, что и сподвигло сотворить данную конструкцию. Итак, для начала были поставлены цели:

  1. Простота в сборке и минимум компонентов.
  2. Использование того, что было под рукой.
  3. Небольшие габариты (так как на столе для приборов место не бесконечно).
  4. Простота управления (отсутствие лишних кнопок и бредовых функций).
  5. Интуитивно понятный интерфейс.
  6. Диапазон генератора от 20 Гц до 40 МГц.
  7. Полоса качания от 255 Гц до 39 МГц.
  8. Минимальный шаг перестройки 1 Гц.
Читайте также  Схемы включения автономных генераторов

Пошуршав по сусекам с радиодеталями, были выбраны следующие компоненты:

  1. Микроконтроллер PIC16F73
  2. Дисплей символьный, 1 строка, 16 символов.
  3. Китайский модуль DDS на базе AD9850 и опорника на 125 МГц (стоит

Определившись с компонентами и выкурив даташит на DDS, а так же набросав схемку,

приступил к программированию прошивки.

Скажу сразу, тут я выкладываю прошивки версии от 1.3, так как всё, что было до этого, получалось не совсем удобным и не везде функциональным.

Собственно, что же должен представлять из себя прибор? В первую очередь он должен быть обычным генератором с возможностью качания, то есть режим качания неплохо бы отделить от всего остального, но при этом (вспоминаем задачу номер 4) не иметь дополнительных переключателей режима. Что и было сделано. При включении генератор работает как обычный генератор, энкодером изменяется частота,

после кратковременного нажатия на кнопку «select» можно поменять шаг перестройки

(как бы ничего лишнего).

При удержании кнопки «select» в течение 2х секунд, активируется дополнительное меню, позволяющее настроить параметры качания частоты.

После чего по нажатию «select» уже будут доступны:

полоса качания (в плюс от той, что указана как F),

скорость качания частоты с вариантами 1000ms, 500ms, 200ms, 100ms,

а так же пункт включения качания частоты.

Все настройки можно изменять онлайн, то есть прямо в процессе качания можно покрутить любой параметр.

Если режим качания более не требуется, то его можно отключить,

после чего качание прекратится, а при очередном нажатии «select» на экране появится надпись,

и устройство вернётся в режим обычного генератора.

Естественно, для наблюдения самой АЧХ нам понадобится ВЧ детектор, схем которых в интернете пруд пруди, например вот:

Ну и, конечно же, осциллограф. Сразу встаёт вопрос «а как синхронизировать осциллограф с генератором?», давайте разберём:

На самом деле существует всего два варианта.

Первый — переключать осциллограф в ждущий режим и запускать развёртку по импульсу от генератора.

Второй способ — это когда мы с генератора подаём «пилу» на вход «Х» осциллографа.

Недолго думая, решил я реализовать оба этих способа, так как осциллограф у меня не в единственном экземпляре имеется, а на каком, как будет красивее и удобнее смотреться, гадать совершенно не хотелось. Да и при повторении конструкции люди сами выберут как им лучше.

По итогу получился такой вот прибор:

На самом деле, написать эту статью меня сподвигла общественность, потому как в процессе бета-тестинга, который мне помогли выполнить несколько коллег по хобби, появились модификации печатных плат и несколько вариантов прошивок (прошивки отличаются только подключаемым дисплеем (1 или 2 строчечным) и разводкой энкодера (чтобы при кручении ручки по часовой стрелке, частота шла в плюс).

От себя я хочу выразить огромную благодарность этим людям, без их участия конструкция не получилась бы настолько интересной и универсальной. Ну, и конечно, фотографии прилагаются.

При желании данный генератор можно дополнить выходным усилителем и перестраиваемым аттенюатором, но это уже будет свобода творчества людей, которые захотят повторить для себя этот прибор.

Генератор высокой частоты – враг электросчетчиков. Как сделать высокочастотный генератор

Высокочастотные генераторы служат для образования колебаний электрического тока в интервале частот от нескольких десятков килогерц до сотен мегагерц. Такие устройства создают с применением контуров колебаний LС или резонаторов на кварцах, которые являются элементами задания частоты. Схемы работы остаются такими же. В некоторых цепях контуры гармонических колебаний заменяются кварцевыми резонаторами.

Генератор ВЧ

Устройство для остановки электросчетчика энергии служит для питания электроприборов бытового назначения. Его выходное напряжение 220 вольт, потребляемая мощность 1 киловатт. Если в приборе применить составляющие элементы с характеристиками мощнее, то от него можно запитывать более мощные устройства.

Такой прибор включается в розетку бытовой сети, от него идет питание на нагрузку потребителей. Схема электрических проводов не подвергается каким-либо изменениям. Систему заземления подключать нет необходимости. Счетчик при этом работает, но учитывает примерно 25% энергии сети.

Действие устройства остановки в подключении нагрузки не к питанию сети, а к конденсатору. Заряд этого конденсатора совпадает с синусоидой напряжения сети. Заряд происходит высокочастотными импульсами. Ток, который расходуется потребителями из сети, состоит из высокочастотных импульсов.

Счетчики (электронные) имеют преобразователь, который не чувствителен к высоким частотам. Поэтому, расход энергии импульсного вида счетчик учитывает с отрицательной погрешностью.

Схема прибора

Генератор высокой частоты

Главные составляющие элементы прибора:

  • выпрямитель;
  • емкость;
  • транзистор.

Конденсатор подключен по последовательной цепи с выпрямителем, когда выпрямитель производит работу на транзистор, заряжается в данный момент времени до размера напряжения линии питания.

Зарядка осуществляется частотными импульсами 2 кГц. На нагрузке и емкости напряжение близко к синусу на 220 вольт. Для ограничения тока транзистор в период заряда емкости, предназначен резистор, подключенный с каскадом ключа по последовательной схеме.

Генератор выполнен на логических элементах. Он образует импульсы 2 кГц с амплитудой на 5 вольт. Сигнальная частота генератора определена свойствами элементов С2-R7. Такие свойства могут использоваться для настройки максимальной погрешности учета расхода энергии. Создатель импульсов выполнен на транзисторах Т2 и Т3. Он предназначен для управления ключом Т1. Создатель импульсов рассчитан так, что транзистор Т1 начинает насыщаться в открытом виде. Поэтому на нем расходуется небольшая мощность. Транзистор Т1 тоже закрывается.

Выпрямитель, трансформатор и остальные элементы создают блок питания низкой стороны схемы. Такой блок питания работает на 36 В для микросхемы генератора.

Генератор высокой частоты

Сначала делают проверку блока питания отдельно от схемы с низким напряжением. Блок должен создавать ток выше 2-х ампер и напряжение 36 вольт, 5 вольт для генератора с малой мощностью. Далее делают наладку генератора. Для этого отключают силовую часть. От генератора должны идти импульсы размером 5 вольт, частотой 2 килогерца. Для настройки выбирают конденсаторы С2 и С3.

Создатель импульсов при проверке должен выдавать импульсный ток на транзисторе около 2 ампер, иначе транзистор выйдет из строя. Для проверки такого состояния включают шунт, при выключенной силовой схеме. Напряжение импульсов на шунте измеряют осциллографом на работающем генераторе. Основываясь на расчете, вычисляют значение тока.

Далее, проверяют силовую часть. Восстанавливают все цепи по схеме. Конденсатор отключают, вместо нагрузки применяют лампу. При подключении прибора напряжение при нормальной работоспособности прибора должно равняться 120 вольт. На осциллографе видно напряжение нагрузки импульсами с частотой, определенной генератором. Импульсы модулируются синусом напряжения сети. На сопротивлении R6 – импульсами выпрямленного напряжения.

При исправности устройства включают емкость С1, в результате напряжение повышается. При дальнейшем повышении размера емкости С1 доходит до 220 вольт. Во время этого процесса нужно контролировать температуру транзистора Т1. При сильном нагревании на небольшой нагрузке возникает опасность, что он не вошел в режим насыщения или не осуществилось полное закрытие. Тогда нужно сделать настройку создания импульсов. На практике такого нагрева не наблюдается.

В итоге, подключается нагрузка по номиналу, определяется емкость С1 такого значения, чтобы создать для нагрузки напряжение 220 вольт. Емкость С1 выбирают осторожно, с небольших значений, потому что повышение емкости резко повышает ток транзистора Т1. Амплитуду токовых импульсов определяют, если подключить осциллограф к резистору R6 по параллельной схеме. Импульсный ток не поднимется выше допускаемого для определенного транзистора. Если нужно, то ток ограничивают путем повышения значения сопротивления резистора R6. Оптимальным решением будет выбрать наименьший размер емкости конденсатора С1.

При данных радиодеталях прибор рассчитан на потребление 1 киловатта. Чтобы повысить мощность потребления, нужно применить более мощные силовые элементы ключа на транзисторе и выпрямителя.

При выключенных потребителях устройство расходует немалую мощность, учитываемую счетчиком. Поэтому лучше выключать этот прибор при отключенной нагрузки.

Принцип работы и конструкция полупроводникового генератора ВЧ

Генератор высокой частоты

Генераторы высокой частоты выполнены на широко применяемой схеме. Различия генераторов заключаются в цепочке RС эмиттера, которая задает транзистору режим по току. Для образования обратной связи в цепи генератора от индуктивной катушки создают вывод клеммы. Генераторы ВЧ работают нестабильно на биполярных транзисторах из-за влияния транзистора на колебания. Свойства транзистора могут измениться при колебаниях температуры и разности потенциалов. Поэтому образующаяся частота не остается постоянной величиной, а «плавает».

Чтобы транзистор не влиял на частоту, нужно уменьшить связь контура колебаний с транзистором до минимальной. Для этого нужно снизить размеры емкостей. На частоту оказывает влияние изменение нагрузочного сопротивления. Поэтому нужно между нагрузкой и генератором включить повторитель. Для подключения напряжения к генератору применяют постоянные блоки питания с небольшими импульсами напряжения.

Генератор высокой частоты

Генераторы, сделанные по схеме, изображенной выше, имеют максимальные характеристики, собраны на полевиках. Во многих схемах генераторов ВЧ сигнал выхода снимается с контура колебаний через небольшой конденсатор, а также с электродов транзистора. Здесь нужно учесть, что вспомогательная нагрузка контура колебаний изменяет его свойства и частоту работы. Часто это свойство применяют для замера разных физических величин, для проверки технологических параметров.

Генератор высокой частоты

На этой схеме показан измененный генератор высокой частоты. Значение обратной связи и лучшие условия возбуждения выбирают при помощи элементов емкости.

Из всего количества схем генераторов выделяются варианты с ударным возбуждением. Они действуют за счет возбуждения контура колебаний сильным импульсом. В итоге электронного удара в контуре образуются затухающие колебания по синусоидальной амплитуде. Такое затухание происходит из-за потерь в контуре гармонических колебаний. Скорость таких колебаний вычисляется по добротности контура.

Сигнал ВЧ на выходе будет стабильным в том случае, если импульсы будут иметь высокую частоту. Такой вид генераторов самый старый из всех рассматриваемых.

Ламповый ВЧ генератор

Чтобы получить плазму с определенными параметрами, необходимо подвести необходимую величину к разряду мощности. Для эмиттеров на плазме, работа которых основана на разряде высокой частоты, применяется схема подведения мощности. Схема изображена на рисунке.

Генератор высокой частоты

Усилитель мощности на лампах преобразовывает энергию электрического постоянного тока в переменный ток. Главным элементом работы генератора стала электронная лампа. В нашей схеме это тетроды ГУ-92А. Это устройство представляет собой электронную лампу на четырех электродах: анод, экранирующая сетка, управляющая сетка, катод.

Сетка управления, на которую поступает сигнал высокой частоты малой амплитуды, закрывает часть электронов, когда сигнал характеризуется отрицательной амплитудой, и повышает ток на аноде, при положительном сигнале. Экранирующая сетка создает фокус электронного потока, увеличивает усиление лампы, снижает емкость прохода между сеткой управления и анодом в сравнении с 3-электродной системой в сотни раз. Это уменьшает выходные искажения частот на лампе при действии на высоких частотах.

Генератор состоит из цепей:

  1. накала с питанием низкого напряжения.
  2. возбуждения и питания сетки управления.
  3. питания сетки экрана.
  4. Анодная цепь.

Между антенной и выходом генератора находится ВЧ трансформатор. Он предназначен для отдачи мощности на эмиттер от генератора. Нагрузка контура антенны не равна величине отбираемой наибольшей мощности от генератора. Эффективность передачи мощности от каскада выхода усилителя к антенне может быть достигнута при согласовании. Элементом согласования выступает емкостный делитель в цепи контура анода.

Генератор высокой частоты

Элементом согласования может работать трансформатор. Его наличие необходимо в разных согласующих схемах, потому что без трансформатора не осуществится высоковольтная развязка.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Цифровой генератор от 1Hz до 40 МНz, это просто.

DDS синтезатор на AD9850, привлекает радиолюбителей своей простотой и возможностями.

Обычно цифровые генераторы частоты, в которых требуемое значение частоты устанавливают с помощью клавиатуры, как правило, выполнены на микроконтроллере, диапазон генерируемых частот ограничен несколькими мегагерцами, а получение точного значения частоты в широких пределах затруднительно. Описываемый в статье генератор тоже содержит микроконтроллер, но использован он только для управления специализированной микросхемой — синтезатором частоты AD9850 . Применение этой микросхемы позволило расширить диапазон генерируемых частот от 0Hz до 40 МНz, в пределах которого можно получить любое значение частоты с точностью 1Hz.

DDS синтезатор AD9850

Структурная схема синтезатора AD9850 изображена на рис. 1. Его основа — аккумулятор фазы, формирующий код мгновенной фазы выходного сигнала. Этот код преобразуется в цифровое значение синусоидального сигнала, который с помощью ЦАП превращается в аналоговый и подвергается фильтрации. Компаратор позволяет получить выходной сигнал прямоугольной формы. Его частота fout (в герцах) определяется формулой

Fout — выходная частота, Hz ;

Fin — тактовая частота, Hz ;

∆ – 32-битное значение кода частоты.

Мак­симальное значение Fout не может превосходить половины тактовой частоты.

Основные технические характеристики AD9850 (при напряжении питания ).

2 выходных сигнала

Частота тактового генератора, МНz: 1…125

Максимальный потребляемый ток (при fin=125 МГц), мА 95

Число разрядов ЦАП 10

Максимальный выходной ток ЦАП (при Rset=3,9 кОм), мА 10,24

Максимальная интегральная нелинейность ЦАП, МЗР 1

Компаратор имеет подстройку, переменным резистором R13.

Напряжение на выходе компаратора, В:

минимальное высокого уровня 4,8

максимальное низкого уровня 0,4

Для загрузки данных в микросхеме AD9850 предусмотрены параллельный и последовательный интерфейсы.

В последнем случае данные (слово длиной 40 бит) вводят через ее вход DАТА.

Каждый бит данных сопровождают импульсом положительной полярности на входе синхронизации W_CLK.

После загрузки управляющего слова по импульсу положительной полярности на входе F U _ U D происходит замена параметров генерации новыми..

Принципиальная схема управления генератором изображена на рис. 2.

Управляет синтезатором DD2 микроконтроллер DD1.

Управление происходит с помощью энкодера Sk1 с кнопкой Кн0, и дополнительных кнопок Кн1Кн6.

Вращая ручку энкодера вправо или влево, производим изменение частоты на экране ЖКИ прибора, и одновременно получаем это же значение частоты в виде прямоугольника и синуса на выходе схемы.

Кн0 * задает шаг установки частоты с помощью энкодера Sk1 (1Hz, 10Hz, 100Hz, 1kHz, 10kHz, 100kHz, 1MHz, выбор значений по «кольцу» , данный режим работы кнопки Кн0 * актуален только в версии программы 1.0).

Значение выходной частоты выставляется с точностью порядка 1Hz, что достаточно для большинства случаев.

Кнопки Кн1Кн6, это кнопки быстрого доступа, с их помощью можно устанавливать определенную частоту генератора одним нажатием кнопки.

Каждая кнопка Кн1Кн6, это есть ячейка с памятью.

В них прописывается значение частоты следующим образом: сначала устанавливаем нужную нам частоту на экране ЖКИ с помощью энкодера Sk1,

нажимаем и длительно удерживаем Кн0 , на экране появится надпись «record» , не отпуская Кн0, нажимаем любую кнопку Кн1 – Кн6 нужной нам ячейки, на экране это будет отражено надписью «is made», запись в ячейку произведена.

Введенные в ячейки значения частоты сохраняются в энергонезависимой памяти микроконтроллера.

А так же еще следует знать, что при старте МК всегда считывается установка частоты с ячейки Кн1.

А значение, записанное в ячейке кнопки Кн6, управляет выходом РD7(13 ножка МК), которое в свою очередь по цепочке D1 R1 отключает генерацию прямоугольного сигнала генератора AD9850.

К сожалению, DDS выдаёт побочные сигналы, уровень которых зависит от тактовой и выходной частот (при частоте более 5MHz (или любое значение частоты, внесенное в ячейку Кн6) по цепочке D1 R1 можно с МК подать лог . 1 , при этом не будут, вносится искажения в синусоидальный сигнал генератора, это в случае если это требуется пользователю прибора, в противном случае цепочку из деталей D1 R1 не устанавливать).

FUSE:

Программа написана для работы МК на тактовой частоте 8 МГц. МК тактируется от внутреннего RS осциллятора.

Примеры работы генератора, в фотографиях.

Небольшое видео, работы программы управления и генератора, в разных режимах управления частотой.

Генераторы

Электронное управление частотой генератора

В среде начинающих радиолюбителей -конструкторов часто возникают проблемы с управлением частотой различных генераторов, в том числе и задающих генераторов (ЗГ) радиопередающих устройств. В этой статье предлагаю вашему вниманию несколько вариантов простых схем управления частотой генераторов, которые, на мой взгляд, недостаточно широко описывались в радиолюбительской литературе.

Простая схема электронной настройки

Перестройка частоты задающего генератора передатчика с параметрической стабилизацией частоты обычно выполняется при помощи конденсатора переменной емкости с воздушным диэлектриком. Иногда применяется перестройка частоты изменением индуктивности контурной катушки ЗГ.Очень удобно перестраивать частоту задающих генераторов электронным способом — с помощью варикапа или, что лучше, варикапной матрицы. Одна из распространенных схем электронной перестройки показана на рис. 1.

В качестве матрицы здесь используются два отдельных варикапа, включенные навстречу друг другу В итоге такая схема эквивалентна схеме варикапной матрицы. Благодаря встречному включению варикапов для переменного тока уменьшается зависимость частоты от амплитуды высокочастотного напряжения.

Если используется собственно варикапная матрица, то параметры контура для неё не сложно рассчитать. Например, у КВС111Б емкость изменяется от 20 до 40 пФ при изменении смещения от +9 до +2 В. Изменение емкости составляет 20 пФ Если перекрытие по частоте должно быть, скажем, 6%, то необходимое изменение емкости составит 12 % (вдвое больше, так как индуктивность контура не изменяется). Отсюда находим полную емкость контура С = 20 пФ/0,12 =167 пФ. Индуктивность контура рассчитывается по известной Формуле Томсона:

Чтобы не ухудшилась стабильность частоты, напряжение смещения варикапов должно быть очень хорошо стабилизировано и отфильтровано, Это очень важно. Для небольшой перестройки контура вместо варикапов можно использовать обычные кремниевые диоды. Но в этом случае диоды должны подбираться под нужную величину перекрытия по частоте. Дело в том, что не у всех однотипных диодов собственная емкость при изменении запирающего напряжения изменяется на одну и ту же величину.

На рис 2 показана схема электронного сдвига частоты, что очень часто используется при переходе с приема на передачу. Например, при приеме генератор должен выдавать частоту 133,3 МГц, а при передаче — 144 МГц.

Варикап в этом случае подключается через конденсатор небольшой емкости, поскольку требуемый сдвиг частоты невелик. В верхнем положении переключателя S1 (передача) на

электронная перестройка частоты генератора

варикап подается фиксированное напряжение смещения с делителя R3R4 При переходе на прием (нижнее положение) смещение изменяется переменным резистором R5, сдвигая частоту. Пределы перестройки можно подобрать, изменяя емкость конденсатора С5 или соотношение сопротивлений делителя R2.. R6.

На рис. 3 в качестве иллюстрации к теме об электронной перестройке частоты показана действующая схема генератора с одним из возможных вариантов электронной перестройкой частоты. Электронная перестройка частоты выполняется переменным резистором R4. В качестве варикапов используются диоды VD2 и VD3 типа Д220. Вместо этих диодов можно использовать также диоды многих других типов.

Кварцевый генератор с изменением частоты

Далее я хочу рассказать о том, как можно выполнить стабилизированный кварцем генератор с плавным изменением частоты. Подобные генераторы стали применяться радиолюбителями с 70-х годов прошлого столетия, но достаточно подробного описания методов построения и настройки подобных генераторов я нигде в любительской литературе не встречал. Ниже мною будут приведено описание экспериментов с одним из вариантов подобного генератора, затем будут даны рекомендации по разработке кварцевого генератора с плавным изменением частоты.

Чтобы выявить роль и влияние катушки индуктивности в процессе плавного изменения генерируемых кварцевым генератором частот электромагнитных колебаний, мною был построен небольшой стенд, основу которого представлял экспериментальный кварцевый генератор (КГ).

Генератор выполнен по схеме индуктивной трехточки. Схема генератора представлена на рис. 4.

Генератор выполнен по схеме емкостной трехточки и не имеет каких либо особенностей. Транзистор VT1 выполняет функцию собственно генератора, частота генерируемой энергии которого стабилизирована кварцем Z1, а каскад на VT2 является эмиттерным повторителем, который служит для уменьшения влияний цепи измерительного прибора А1 на частоту генератора. Катушка индуктивности L1 и конденсатор С1 служат для изменения частоты генерируемых электромагнитных колебаний. Питается генератор от стабилизированного источника напряжения +9 Вольт.

Конденсатор С1 имеет величину 75 пкФ, катушка L1 состоит из 45 витков провода ПЭЛ-0,3, намотана на каркасе диаметром 9 мм, между щечками с расстоянием 5 мм. Катушка имеет подстроечный сердечник серого цвета (по-видимому из альсифера) с резьбой Мб х 0,75. Число витков катушки L1 выбрано по результатам проведенных ранее других подобных экспериментов.

В схеме использовался кварц А523 (7,692 МГц) от старинной УКВ радиостанции РСИУ. корпус которого представляет собой пластмассовый цилиндр коричневого цвета, диаметром 20 мм и длиной 40 мм с двумя выводами от держателей кварцевой пластины. Все остальные радиодетали каких либо особенностей не имеют, обычный «ширпотреб».

В качестве прибора для измерения излучаемой генератором частоты использовался связной коротковолновый радиоприемник Р-250М. Контроль за наличием генерации электромагнитных колебаний осуществлялся вольтметром переменного тока А1 Рассмотрим подробно процесс проведения эксперимента.

Сначала следует убедиться в работоспособности генератора. Для этого нижний по схеме вывод от кварца подключаем непосредственно к земле, включаем питание и по приемнику находим излучаемый генератором сигнал При этом радиоприемник должен находиться в режиме приема телеграфных сигналов, чтобы можно было наиболее точно настраиваться на частоту излучаемых колебаний по нулевым биениям Нулевые биения соответствуют такой настройке приемника, когда на выходе радиоприемника никаких звуковых сигналов не прослушивается, но стоит только хотя бы немного повернуть ручку настройки приемника в ту или иную сторону, то тут же на выходе приемника появляется гармонический звуковой сигнал. Вольтметр А1 должен показывать какую-то величину, подтверждающую работу генератора. Записываем величину излучаемой частоты.

Восстанавливаем подключение катушки L1 к нижнему выводу кварца. При этом подстроечный сердечник должен быть полностью выведен из катушки, те. катушка должна иметь минимально возможную для нее величину индуктивности Включаем питание. При этом вольтметр А1 должен сразу же подтвердить работу генератора. Частота излучаемых генератором колебаний при этом включении несколько (незначительно) должна измениться по сравнению с предыдущим включением. Настраиваем радиоприемник на новую частоту по нулевым биениям, записываем величину этой частоты и присваиваем ей номер 1. Вводим в корпус катушки подстроечный сердечник. Делать это следует очень осторожно и медленно, чтобы не пропустить момент возникновения на выходе радиоприемника гармонического звукового сигнала, подтверждающего факт начала влияния сердечника на индуктивность катушки. Как только появится сигнал, следует повернуть сердечник в обратную сторону, до момента отсутствия сигнала.

* Далее начинается основной этап проведения эксперимента. Для этого вводим подстроечный сердечник в катушку ровно на один оборот сердечника. При этом изменится индуктивность катушки, что повлечет за собой изменение частоты излучаемых генератором электромагнитных колебаний. Записываем новую величину частоты под номером 2.

* Вводим подстроечный сердечник в катушку еще ровно на один оборот и записываем новую величину частоты по номером 3.

* Точно таким же образом вводим сердечник в катушку еще на один оборот и записываем новую величину частоты под следующим порядковым номером. Такую процедуру следует проводить несколько раз При этом постоянно необходимо контролировать наличие показаний вольтметра А1. Если стрелка вольтметра упала до нуля, значит генератор перестал работать и эксперимент считаем законченным.

В моем случае удалось до прекращения генерации ввести сердечник внутрь катушки на 10 оборотов. Результаты проведенного мною эксперимента приведены в таб 1. Каждое из полученных значений частоты соответствует определенной величине индуктивности катушки, заданной положением подстроечного сердечника, и определенной величиной емкости конденсатора С1. Если вместо постоянного конденсатора величиной 75пФ установить конденсатор переменной емкости 4- 75 пФ, то при минимальной емкости этого переменного конденсатора (4 пФ) излучаемая генератором частота будет равна максимально возможной частоте, т.е. очень близкой к частоте в шаге 1 (7,962 МГц для данного случая).

При максимальной частоте переменного конденсатора (75 пФ) частота генерируемых колебаний будет определяться положением подстроечного сердечника внутри катушки. Например, если индуктивность катушки соответствует положению шага 5, то при максимальном емкости переменного конденсатора генерируемые колебания будут иметь частоту 7.957 МГц. При изменении емкости переменного конденсатора от минимума (4 пФ) до максимума (75 пФ) частота генерируемых кварцевым генератором электромагнитных колебаний будет плавно изменяться от 7,962 до 7.957 МГц, те диапазон изменения частоты составляет 7,962 — 7,957 = 0,005 МГц = 5 кГц.

Максимально возможный диапазон перестройки частоты для данного кварца будет иметь место при максимально допустимой индуктивности катушки L1. В данном случае максимально допустимая индуктивность получается в шаге 10. При этом максимально возможный диапазон перестройки частоты получается 7,961 — 7,771 = 0,090 МГц = 90 кГц. Это довольно большой диапазон перестройки, но следует помнить, что с увеличением диапазона перестройки ухудшается стабильность частоты кварцевого генератора. В каждом отдельном случае нужно находить какую то оптимальную величину диапазона перестройки исходя из допустимой для создаваемого аппарата стабильности генерируемой частоты. Как правило, радиолюбитель использует только какой-то узкий диапазон частот Например, любитель дальних связей телеграфом постоянно работает только на DX-участке диапазона, владелец пакетной радиостанции станции, работающей постоянно в составе любительской пакетной сети, использует практически одну фиксированную частоту. Если учесть, что коротковолновый любительский диапазон имеет ширину 100 кГц, то иметь исключительно простой в изготовлении и наладке кварцевый генератор с плавным изменением частоты в пределах 50 кГц это находка для радиолюбителя, не желающего возиться со сложнейшими схемами синтезаторов.

Большие возможности дает принцип плавного изменения частоты кварцевых генераторов при построении УКВ гетеродинов. Дело в том, что в этих гетеродинах используются каскады умножения частоты. При этом диапазон перестройки частоты при переходе от одного каскада к другому увеличивается пропорционально увеличению частоты. Например, после

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: