Твс 110пц15 для высоковольтного генератора

Прошивки, ремонт, лайфхаки. Все что касается техники и ПО.

Получаем 10 000 Вольт из строчника) Или самодельный плазменный шарик из обычной лампочки на 220В!

Всем доброй ночи)

Давно уже ничего не писал, и вот наконец-то появилась свободная минутка, для того, чтобы поделится с Вами очередной наработкой=))

  • Сегодня мы будем учится получать довольно высокое напряжение в домашних условиях.
  • Начнем, примерно, с 10 000В.
  • При этом наше устройство будет максимально безопасным – от него может прилично обжечь, но убить искрой этот флайбек Вас врят ли сумеет!
  • Но, если Вы прикоснетесь к искре пальцем или же железным предметом – то несмотря на то, что высокочастотное напряжение идет по поверхности кожи – МАЛО НЕ ПОКАЖЕТСЯ!
  • А еще это устройство будет простым – и Вы его соберете с “0”, за, максимум, пару часов)
  • Автор не несет отвественности за возможные последствия любых экспериментов.
А зачем нам это? Что же мы получим:
  • Можем просто полюбоваться высоковольтными разрядами на 3-4 см. А если у Вас есть реактивы (да хотя бы обычная соль), можно покрасить нашу искру в другой цвет)
  • Сделать лестницу Иакова
  • Расплавить иголку или тонкий гвоздь)
  • Зажечь люминисцентную лампу (любого типа) просто держа ее в руке) И никуда не подключая проводами! Магия=)
  • И, конечно же, сделать плазменный шарик из обычной лампочки на 220В.
Лучше один раз увидеть:

Кстати видео полностью отснято на HTC Mozart, вот Вам общее представление о качестве съемки видео смартфонами среднего класса.

А теперь за работу. Нам понадобятся:
  1. Строчный трансформатор из советского (!) телевизора (любой, у которого есть доступ к катушке – ТВС90, ТВС-110…). Можно купить за 5-10 грн. на радиорынке)
  2. Толстый эмалированный медный провод (1 метр длинной, 1-2 мм толщиной), можно смотать с трансформатора от того же советского телевизора или купить на РР. Еще, как вариант – провод для внутренней проводки по квартире (но именно медный)
  3. Изолента – для того чтобы закрепить нашу катушку.
  4. Лак цапон – если вдруг будет пробой внутри строчника, можно залить его лаком. У меня такое произошло когда оставил всего 4 витка 2 мм. провода. Насыщение, нагрев и пробой. После заливки и просушки работает, как до пробоя)
  5. Макетная плата (2х4мм или больше)
  6. Радиатор для транзистора (лучше с кулером, размер можно подсмотреть на видео). А если поставить транзистор без радиатора – перегрев за 5 сек. и взрыв.
  7. Детали согласно схеме (ниже). Транзисторы можно брать и другие (IRF820, IRF710, IRF260 и т.п.), но результат (длина искры, цвет, толщина) будет отличаться.
  8. Блок питания на 12-15 вольт 5А+ (отлично подходит БП от ПК на 300+ Вт).
Сборка:

WP_000441-Copy[1]

Собраем по схеме:

flyback[1]

WP_000455[1]

WP_000412[1]

  • Осталось спаять провода БП (желтый +12, черный – земля), схему и сам строчник.
  • Ну что, проверили?! Включаем))

WP_000453[1]

“Плазменная” лампа накаливания:

05[1]

WP_000442[1]

Нюансы по сборке:
  • От толщины провода первичной обмотки зависит МАКСИМАЛЬНЫЙ ТОК и, соответственно, ТОЛЩИНА искры.
  • От количества витков зависит КОЕФФИЦИЕНТ ТРАНСФОРМАЦИИ, и, как следствие, НАПРЯЖЕНИЕ на выходе и ДЛИНА искры.
  • При очень низком их количестве (1-3 витка) – возрастает ТОК, и, соответственно, НАГРЕВ. Минимально можно использовать 4 витка, оптимально 5-8.
  • При слишком низкой частоте (меньше 20кГц) – может вообще ничего не работать. А если и будет – перегрев, скорее всего спалит транзистор (за несколько минут, при радиаторе, как на видео).
  • При слишком высокой частоте (90+ кГц) – возможен резонанс (если попасть) и пробой строчника.
  • Оптимальная частота подбирается экспериментально (но, у меня на практике 40<кГц<90), на конкретном ТВС90 – около 70 кГц.

При правильном количестве витков, толщине провода первички, выставленной частоте – длина искры 3-4 см, нагрев не более 55 С – может работать часами.

Удачной сборки и экспериментов)))

Может вам будет интересно почитать:

49 комментариев “ Получаем 10 000 Вольт из строчника) Или самодельный плазменный шарик из обычной лампочки на 220В! ”

Спасибо за то что интересно пишите! Прочитал с удовольствием! Буду теперь посещать ваш сайт чаше, так как закинул его в закладки.

Спасибо за схемку! Для новичков самое то ))

А что если к выходу вот этой вот схемки подключить УН-9/27? Не сгорит?

собрал но неработает . питание твк110лм и диодный мост . остальное по схеме .

возможно мало первички или намотана неправильно. генерация есть на входе?

На строчнмке намотано 6 витков проводом 1,5 мм . А как проверить есть ли генерация ? Осцилографа нет .

Витков может быть и больше, до 12-15, от этого зависти длина дуги. У меня при 5 – генерация срывается. При 6 самая длинная дуга + стабильная генерация.
А проверить можно по звуку.

можно ли просто подключить питание к строчнику без всякой схемы будет ити духа,и вопрос что ето за схема к строчнику и что она ему дает

без генератора не будет работать. вообще!

а если конденсатор на 15 нф 50в пойдёт?

как подключит. питание от компьютерного блока питания? какие провода надо брать? (21pin 300w)

желтый – +12
черный – GND

для запуска БП нужно закоротить зеленый на черный.

можно ли просто подключть умножитель к петанию бес схемы? будет ли он работать?

умножитель работать просто так не будет, на входе то 12 вольт.

и нужно ли замыкать зелёный и чёрный провода на вилке материнки?

а как подключать питание к строчнику он у меня из новых

c импортными может не выйти, у них умножитель встроенный.)

но попробовать стоит) ищи распиновку конкретного строчника, по наклейке, которая на нем.

ты когда нибуть пробивал потключать к строчнику гинератор маркса

нет, но должно работать!

а если сторочник твс-110 то как его подключть и конденсаторы 10нф сколько вольт?

конденсаторы на 15+ вольт, т.е. любая керамика.

а если строчник твс-90пц11 то как его подключить и конденсаторы 10нф сколько вольт?

перемотать первичку как у меня на фото. (5-12 витков медного провода 1 мм., подбирается экспериментально по длине искры, лучше начать с 10)

можно ли подключить питание к строчнику без схемы будет ли он работать и вопрос что ето за схема которую ты подключал к строчнику и что она дает

работать не будет, строчнику нужен генератор (схема), на постоянке ни один трансформатор не будет работать.

народ если можете скинте схему простого но убойного електрошока

народ у меня твс-110 он тоже будет работать если ево подключить.

трансформатор тот что стоит в телеку первый он большой у него первая обмотка толстая медная проволка она подойдет

к тебе хочет добавится тип Виктор Станиславчук ето я добавь пожалуста

а все спасибо ты же меня добавил

Скажите сколько ампер потребляет схема ? Можно ли заменить резисторы на переменные для регулировки частоты ?

До 15 ампер, переменные – можно, только есть нюанс что при регулировке может пробить строчник или транзистор.

Доброе время суток.
Подскажите, куда подключить второй вывод вторички, на фотке красный кабель, выходящий из под строчника. Есть в наличии ТВС -110ПЦ15 и ТВС -110ПЦ16, только вот проводов много с катушки выходит. Один провод отличается изоляцией, и с показанного вывода вторички, мультитестер в режиме прозвона показывает значения, другие выводы не показывают. Тот ли это вывод?
И еще вопрос, куда подключать заземление? С первой ножки микросхемы, с двух конденсаторов, с минусового полюса источника питания и с транзистора указаны символы заземления, выводы с них спаял, как быть дальше?
Спасибо.

Читайте также  Асинхронные режимы работы синхронных генераторов

Источник высокого напряжения, автогенератор

Коронный разряд

Собрать генератор высокого напряжения в домашних условиях несложно, в этой статье рассмотрим простую автогенераторную схему, отличительными особенностями которой является простота и большая выходная мощность.

Автогенератор представляет собой самовозбуждающуюся систему с обратной связью, которая в свою очередь обеспечивает поддержание колебаний. В такой системе частота и форма колебаний определяются свойствами самой системы, а не задаются внешними параметрами.

Схема устройства представлена ниже:
Двухтактный автогенератор, схема
Внешний вида автогенератораУстройство представляет собой двухтактный автогенераторный преобразователь. Полевые транзисторы VT1, VT2 включаются поочередно, например, если включен транзистор VT1, напряжение на его стоке уменьшается, открывается диод VD4, тем самым напряжение на затворе транзистора VT2 уменьшается, не давая ему открыться. Защитные диоды VD2, VD3 предохраняют затворы транзисторов от перенапряжения. Форма импульсов на трансформаторе T1 близка к синусоидальной.

Строчный трансформаторОсновным элементом схемы является высоковольтный трансформатор T1. Лучше всего подходят строчные трансформаторы (ТВС) от ламповых черно-белых телевизоров советского производства. Магнитопровод у таких трансформаторов ферритовый, состоит из двух П-образных частей. Высоковольтная вторичная обмотка выполнена в виде цельной пластмассовой катушки, как правило, расположена отдельно от блока первичных обмоток. Я использовал магнитопровод от строчного трансформатора марки ТВС-110Л4 (магнитная проницаемость 3000НМ), высоковольтную обмотку снял от трансформатора ТВС-110ЛА. Родную первичную обмотку необходимо демонтировать, и намотать новую, из эмалированного медного провода диаметром 2мм, всего 12 витков с отводом от середины (6+6). Во время сборки между П-образными частями магнитопровода, в месте стыка, необходимо проложить картонные прокладки, толщиной примерно в 0,5мм, для уменьшения насыщения магнитопровода.

ДроссельДроссель L1 намотан на феритовом Ш-образном магнитопроводе, 40-60 витков эмалированного медного провода диаметром 1,5мм, между стыками магнитопровода проложена прокладка толщиной 0,5мм. В качестве сердечника можно использовать ферритовые кольца или П-образную часть магнитопровода строчного трансформатора.

Конденсаторы K78-2Конденсатор C3 состоит из 6-ти параллельно соединенных конденсаторов марки К78-2 0,1мк х 1000В, они хорошо подходят для работы в высокочастотных контурах. Резисторы R1,R2 лучше ставить мощностью не менее 2Вт. Высокочастотные диоды VD4, VD5 можно заменить на HER202, HER303 (FR202,303).

Трансформатор ОСМ-1

Для питания устройства подойдет нестабилизированный блок питания с напряжением 24-36В, и мощностью 400-600Вт. Я использую трансформатор ОСМ-1 (габаритная мощность 1кВт) с перемотанной вторичной обмоткой на 36В.

Электрическая дуга зажигается с расстояния 2-3мм между выводами высоковольтной обмотки, что примерно соответствует напряжению 6-9кВ. Дуга получается горячей, толстой и тянется до 10см. Чем длиннее дуга, тем больше потребляемый ток от источника питания. В моем случае максимальный ток достигал значения 12-13А при напряжении питания 36В. Чтобы получить такие результаты, нужен мощный источник питания, в данном случае это имеет основное значение.

Лестница "Иакова"Для наглядности я сделал лестницу “Иакова” из двух толстых медных проводов, в нижней части расстояние между проводниками составляет 2мм, это необходимо для возникновения электрического пробоя, выше проводники расходятся, получается буква “V”, дуга, зажигается внизу, нагревается и поднимается вверх, где обрывается. Я дополнительно установил небольшую свечу под местом максимального сближения проводников, для облегчения возникновения пробоя. Ниже на видеоролике продемонстрирован процесс движения дуги по проводникам.

Коронный разряд на фольге

С помощью устройства можно пронаблюдать коронный разряд, возникающий в сильно неоднородном поле. Для этого я вырезал из фольги буквы и составил фразу Radiolaba, поместив их между двумя стеклянными пластинами, дополнительно проложил тонкий медный провод для электрического контакта всех букв. Далее пластины кладутся на лист фольги, который подключён к одному из выводов высоковольтной обмотки, второй вывод подключаем к буквам, в результате вокруг букв возникает голубовато-фиолетовое свечение и появляется сильный запах озона. Срез фольги получается острым, что способствует образованию резко неоднородного поля, в результате возникает коронный разряд.

При поднесении одного из выводов обмотки к энергосберегающей лампе, можно увидеть неравномерное свечение лампы, здесь электрическое поле вокруг вывода вызывает движение электронов в газонаполненной колбе лампы. Электроны в свою очередь бомбардируют атомы и переводят их в возбужденные состояния, при переходе в нормальное состояние происходит излучение света.

Единственным недостатком устройства является насыщение магнитопровода строчного трансформатора и его сильный нагрев. Остальные элементы нагреваются незначительно, даже транзисторы греются слабо, что является важным достоинством, тем не менее, их лучше установить на теплоотвод. Я думаю, даже начинающий радиолюбитель при желании сможет собрать данный автогенератор и устроить эксперименты с высоким напряжением.

Высоковольтный генератор из строчника

Для самостоятельного изготовления флокатора, пистолета порошковой покраски или электростатической коптильни требуется источник высокого напряжения. И если первые два устройства требуют 75-100 киловольт, то высоковольтный генератор для коптильни работает при 15-20.

В сети есть множество схем высоковольтных генераторов сделанных с использованием строчных трансформаторов от мониторов, телевизоров или автомобильных катушек зажигания. В большинстве своём их схемотехника удручает – как правило это простейшие обратноходовые преобразователи, а значит транзистор в них будет работать в роли кипятильника т.к. для новичка наверняка не имеющего осциллографа рассчитать снаббер практически не реально.

Схемы из прошлого века на тиристорах с питанием от сети 220 вольт опасны и в случае неосторожности могут привести к печальным последствиям. Мы же сделаем резонансный полумост на ТДКС .

Давайте посмотрим схему:

Схема высоковольтного генератора

Список компонентов:

  1. U1 – «IR2153»;
  2. C1 – электролит 470-1000uf 16v, желательно Low Esr;
  3. C2 – керамика 1n;
  4. C3, C4 – керамика 100n;
  5. C5, C6 – полипропилен 470nf 630v;
  6. R1 – многооборотный подстроечный резистор;

Остальные компоненты вопросов думаю не вызывают.

Файл печатной платы: ir2153.lay6[0,03MB]

В качестве генератора используется распространённая микросхема IR2153, для работы которой требуются всего несколько деталей в обвязке: времязадающая RC цепочка и конденсатор с диодом для верхнего ключа.

Транзисторы при сборке необходимо установить на небольшие радиаторы, я этого делать не стал т.к. плата нужна лишь для демонстрации. Так же не рекомендую включать устройство без запаянного электролитического конденсатора, может получится ситуация когда через ключи потечет сквозной ток.

Номиналы времязадающей цепи с помощью подстроечного резистора позволяют микросхеме работать в диапазоне частот примерно от 7 до 146kHz. В процессе настройки включать высоковольтный генератор желательно через амперметр для контроля тока, при этом желательно что бы блок питания выдавал не менее 3-х ампер при 12 вольт.

Подстроечным резистором можно пройтись по всему диапазону частот для нахождения резонансных участков, при этом для получения 20 киловольт искровой разряд не должен превышать буквально 1.5 см, а ток потребления при этом должен быть около 0.6-0.8А.

Если добиться таких результатов не удается то есть два варианта. Первый из них «поиграть витками», увеличивая или уменьшая их количество, второй – заменить резонансный конденсатор с 470 на 330 или 220 нанофарад. У меня все заработало сразу после сборки, но как говориться – если вдруг.

Перед намоткой первичной обмотки на ТДКС феррит следует изолировать изолентой или скотчем, мотать следует эмальпроводом 0.6-0.8мм, или (что лучше) сразу двумя-тремя проводами 0.6 параллельно. Провода от трансформатора до платы желательно не более 10 сантиметров.

Не следует забывать что во вторичной обмотке ТДКС как правило находится диод, поэтому умножитель напряжения к нему не подключишь.

Для использования в электростатической коптильне параллельно выходам необходимо поставить конденсатор

30kV 470pf – 2.2n и выходной токоограничительный резистор.

Читайте также  Азгар фэнтези мап генератор

Генераторы высокого напряжения могут быть использованы в общем-то где угодно, но основное назначение следующее:

1.Запитка электронно-лучевых трубок, ЭЛТ кинескопов осциллографов, телевизоров, мониторов, дисплеев.

2.Рентгеновских трубок, ускорителей заряженных частиц.

3.Питание высоковольтных люминесцентных ламп, особенно при последовательном включении большого их количества.

4.Питание всевозможных газосветных и вакуумных ламп, некоторых радиоламп, с целью получения катодных лучей.

5.Генерация электрических полей.

6.Питание устройств коммутируемых разрядниками.

7.Реакции ХЯС, LENR, устройства Свободной Энергии, СЕ девайсы.

8.Всевозможные декоративные устройства, генераторы молний, озонаторы, лампы Чижевского, воздухоочистители.

9.Множество других целей.

Итак, для начала представим внутреннюю разводку самого любимого трансформатора для получения высокого напряжения ТВС 110ПЦ15,

который в данный момент является дефицитным устройством, так как современной промышленностью не выпускается,

однако его можно купить на рынках или снять со старых советских ЭЛТ телевизоров:

Ниже приводится универсальная схема для питания ТВС и не только.

Выбранная схема хорошо формирует симметричный противофазный меандр на частотах 1-100кГц,

однако такие частоты заданы в генераторе для эксперементальных целей, истинная рабочая частота ТВС 110 ПЦ15 составляет 16кГц,

это резонансная частота данного ТВС. В схеме предусмотрено питание как на полевых, так и на биполярных транзисторах,

если не нужно использовать то и то, то обычно останавливаются на чем-то одном:

На выходе ТВС обычно получают переменное напряжение с частотой 16 кГц и напряжением около 10кВ, однако часто требуется еще более высокое напряжение и как раз постоянное,

для этого выход ТВС соединяются с блоком умножения, он и дает увеличение напряжения, он же и выпрямляет его. Возможный вариант одного звена (увеличение напряжения в 1.5-2 раза)

умножителя напряжения будет выглядеть так (в случае необходимости несколько таких звеньев включают последовательно)

(здесь указано включение блока от сети 220 вольт, но при высоковольтных диодах его можно подключать и на выход ТВС):

При возможности используют готовый умножитель хорошо совместимым с ТВС 110ПЦ15 является умножитель УН9-27-1.3.

Примерно так будет выглядеть готовая, но с более простым генератором схема включения ТВС и готового умножителя:

Как результат получится примерно такой девайс ( ВИДЕО с ютуб):

Генератор HV на ТВС и умножителе УН9/27-1.3

Привет всем любителям самоделок. В этой статье я расскажу, как сделать генератор высокого напряжения своими руками, применение которого достаточно широкое, его можно будет использовать в качестве питания газоразрядных ламп, озонатора для травления крыс. Также он идеально подойдет для создания шокера или же электроподжига газа. Думаю многим стало интересно как это собрать, поэтому не затягиваем и переходим к сборке, самое же устройство основано на блокинг-генераторе.

Но перед прочтением подробной сборки предлагаю посмотреть видео, где можно наглядно увидеть принцип действия самоделки и понять, а надо ли оно мне.

Для того, чтобы сделать своими руками генератор высокого напряжения, понадобится:
* Транзистор IRF3205 с радиатором
* Аккумулятор типа 18650
* Умножитель
* Резистор на 100 Ом
* Паяльник, припой, флюс
* Строчный трансформатор ТВС-110ПЦ15
* Обмоточный провод, диаметр 1 мм и длиной 1 м
* Канцелярский нож или скальпель
* Провода

Вот и все, что нужно для изготовления данной самоделки, думаю не так и сложно все это найти, учитывая, что почти все детали были взяты из старого телевизора.

Шаг первый.
Данный трансформатор работает по принципиальной схеме, которая достаточна легка в повторении любому начинающему в этом деле.

Генератор высокого напряжения из строчника своими руками

Привет всем любителям самоделок. В этой статье я расскажу, как сделать генератор высокого напряжения своими руками, применение которого достаточно широкое, его можно будет использовать в качестве питания газоразрядных ламп, озонатора для травления крыс. Также он идеально подойдет для создания шокера или же электроподжига газа. Думаю многим стало интересно как это собрать, поэтому не затягиваем и переходим к сборке, самое же устройство основано на блокинг-генераторе.

Но перед прочтением подробной сборки предлагаю посмотреть видео, где можно наглядно увидеть принцип действия самоделки и понять, а надо ли оно мне.

Для того, чтобы сделать своими руками генератор высокого напряжения, понадобится:
* Транзистор IRF3205 с радиатором
* Аккумулятор типа 18650
* Умножитель
* Резистор на 100 Ом
* Паяльник, припой, флюс
* Строчный трансформатор ТВС-110ПЦ15
* Обмоточный провод, диаметр 1 мм и длиной 1 м
* Канцелярский нож или скальпель
* Провода

Вот и все, что нужно для изготовления данной самоделки, думаю не так и сложно все это найти, учитывая, что почти все детали были взяты из старого телевизора.

Шаг первый.
Данный трансформатор работает по принципиальной схеме, которая достаточна легка в повторении любому начинающему в этом деле.

Из данной статьи вы узнаете как получить высокое напряжение, с высокой частотой своими руками. Стоимость всей конструкции не превышает 500 руб, при минимуме трудозатрат.

Для изготовления вам понадобится всего 2 вещи: — энергосберегающая лампа (главное, чтобы была рабочая схема балласта) и строчный трансформатор от телевизора, монитора и другой ЭЛТ техники.

Энергосберегающие лампы (правильное название: компактная люминесцентная лампа) уже прочно закрепились в нашем быту, поэтому найти лампу с нерабочей колбой, но с рабочей схемой балласта я думаю не составит труда.
Электронный балласт КЛЛ генерирует высокочастотные импульсы напряжения (обычно 20-120 кГц) которые питают небольшой повышающий трансформатор и т.о. лампа загорается. Современные балласты очень компактны и легко помещаются в цоколе патрона Е27.

Балласт лампы выдает напряжение до 1000 Вольт. Если вместо колбы лампы подключить строчный трансформатор, то можно добиться потрясающих эффектов.

Немного о компактных люминесцентных лампах

Блоки на схеме:
1 — выпрямитель. В нем переменное напряжение преобразуется в постоянное.
2 — транзисторы, включенные по схеме push-pull (тяни-толкай).
3 — тороидальный трансформатор
4 — резонансная цепь из конденсатора и дросселя для создания высокого напряжения
5 — люминесцентная лампа, которую мы заменим строчником

КЛЛ выпускаются самой различной мощности, размеров, форм-факторов. Чем больше мощность лампы, тем более высокое напряжение нужно приложить к колбе лампы. В данной статье я использовал КЛЛ мощностью 65 Ватт.

Большинство КЛЛ имеют однотипную схемотехнику. И у всех имеется 4 вывода на подключение люминесцентной лампы. Необходимо будет подсоединить выхода балласта к первичной обмотке строчного трансформатора.

Немного о строчных трансформаторах

Строчники также бывают разных размеров и форм.

Основной проблемой при подключении строчника, является найти 3 необходимых нам вывода из 10-20 обычно присутствующих у них. Один вывод — общий и пара других выводов — первичная обмотка, которая будет цепляться к балласту КЛЛ.
Если сможете найти документацию на строчник, или схему аппаратуры, где он раньше стоял, то ваша задача существенно облегчится.

Внимание! Строчник может содержать остаточное напряжение, так что перед работой с ним, обязательно разрядите его.

Итоговая конструкция

На фото выше вы можете видеть устройство в работе.

И помните, что это постоянное напряжение. Толстый красный вывод — это "плюс". Если вам нужно переменное напряжение, то нужно убрать диод из строчника, либо найти старый без диода.

Возможные проблемы

Когда я собрал свою первую схему с получением высокого напряжения, то она сразу же заработала. Тогда я использовал балласт от лампы мощностью 26 Ватт.
Мне сразу же захотелось большего.

Я взял более мощный балласт от КЛЛ и в точности повторил первую схему. Но схема не заработала. Я подумал, что балласт сгорел. Обратно подключил колбы лампы и включил в сеть. Лампа загорелась. Значит дело было не в балласте — он был рабочий.

Читайте также  Тесла с прицепом генератором

Немного поразмыслив я сделал вывод, что электроника балласта должны определять нить накала лампы. А я использовал только 2 внешних вывода на колбу лампы, а внутренние оставил "в воздухе". Поэтому я поставил резистор между внешним и внутренним выводом балласта. Включил — схема заработала, но резистор быстро сгорел.

Я решил использовать конденсатор, вместо резистора. Дело в том, что конденсатор пропускает только переменный ток, а резистор и переменный и постоянный. Также, конденсатор не нагревался, т.к. давал небольшое сопротивление на пути переменного тока.

Конденсатор работал великолепно! Дуга получилась очень большой и толстой!

Итак если у вас не заработала схема, то скорее всего 2 причины:
1. Что-то не так подключили, либо на стороне балласта, либо на стороне строчного трансформатора.
2. Электроника балласта завязана на работе с нитью накала, а т.к. ее нет, то заменить ее поможет конденсатор.

Используйте конденсатор на соответствующее напряжение! У меня был на 400 Вольт, взятый из балласта другой энергосберегающей лампы.

При проведении опытов с высоким напряжением будьте предельно осторожны! Высокое напряжение опасно для жизни!

Лампа мощностью 65 Ватт, обеспечивает ток порядка 65 мА (65Ватт/1000В). А сила тока более чем 50 мА, смертельна опасна для жизни и вызывает остановку сердца!

Для самостоятельного изготовления флокатора, пистолета порошковой покраски или электростатической коптильни требуется источник высокого напряжения. И если первые два устройства требуют 75-100 киловольт, то высоковольтный генератор для коптильни работает при 15-20.

В сети есть множество схем высоковольтных генераторов сделанных с использованием строчных трансформаторов от мониторов, телевизоров или автомобильных катушек зажигания. В большинстве своём их схемотехника удручает – как правило это простейшие обратноходовые преобразователи, а значит транзистор в них будет работать в роли кипятильника т.к. для новичка наверняка не имеющего осциллографа рассчитать снаббер практически не реально.

Схемы из прошлого века на тиристорах с питанием от сети 220 вольт опасны и в случае неосторожности могут привести к печальным последствиям. Мы же сделаем резонансный полумост на ТДКС .

Давайте посмотрим схему:

Схема высоковольтного генератора

Список компонентов:

  1. U1 – «IR2153»;
  2. C1 – электролит 470-1000uf 16v, желательно Low Esr;
  3. C2 – керамика 1n;
  4. C3, C4 – керамика 100n;
  5. C5, C6 – полипропилен 470nf 630v;
  6. R1 – многооборотный подстроечный резистор;

Остальные компоненты вопросов думаю не вызывают.

Файл печатной платы: ir2153.lay6[0,03MB]

В качестве генератора используется распространённая микросхема IR2153, для работы которой требуются всего несколько деталей в обвязке: времязадающая RC цепочка и конденсатор с диодом для верхнего ключа.

Транзисторы при сборке необходимо установить на небольшие радиаторы, я этого делать не стал т.к. плата нужна лишь для демонстрации. Так же не рекомендую включать устройство без запаянного электролитического конденсатора, может получится ситуация когда через ключи потечет сквозной ток.

Номиналы времязадающей цепи с помощью подстроечного резистора позволяют микросхеме работать в диапазоне частот примерно от 7 до 146kHz. В процессе настройки включать высоковольтный генератор желательно через амперметр для контроля тока, при этом желательно что бы блок питания выдавал не менее 3-х ампер при 12 вольт.

Подстроечным резистором можно пройтись по всему диапазону частот для нахождения резонансных участков, при этом для получения 20 киловольт искровой разряд не должен превышать буквально 1.5 см, а ток потребления при этом должен быть около 0.6-0.8А.

Если добиться таких результатов не удается то есть два варианта. Первый из них «поиграть витками», увеличивая или уменьшая их количество, второй – заменить резонансный конденсатор с 470 на 330 или 220 нанофарад. У меня все заработало сразу после сборки, но как говориться – если вдруг.

Перед намоткой первичной обмотки на ТДКС феррит следует изолировать изолентой или скотчем, мотать следует эмальпроводом 0.6-0.8мм, или (что лучше) сразу двумя-тремя проводами 0.6 параллельно. Провода от трансформатора до платы желательно не более 10 сантиметров.

Не следует забывать что во вторичной обмотке ТДКС как правило находится диод, поэтому умножитель напряжения к нему не подключишь.

Для использования в электростатической коптильне параллельно выходам необходимо поставить конденсатор

Трансформаторы

Трансформаторы накальные малогабаритные типа ТН применяются для питания устройств на полупроводниковых приборах от сети переменного тока напряжением 220 В и частотой 50 Гц. Трансформаторы изготавливаются на броневых и стержневых магнитопроводах унифицированной конструкции, мощностью от 8,7 до 190 В*А. Трансформаторы имеют несколько вторичных обмоток, рассчитанных на различные токи и напряжения, которые при последовательном и параллельном соединениях позволяют получать всевозможные сочетания токов и напряжений для питания устройств различного функционального назначения.

ТП-100-хх

Трансформатор выполнен на витых либо пластинчатых магнитопроводах.

  • Напряжение питания, В: 220 +/-10%
  • Частота тока, Гц: 50
  • Напряжение пробоя (между первичной и вторичными обмотками, а также магнитопроводом), В: 4000
  • Класс нагревостойкости изоляции: 120 град
  • Предназначен для эксплуатации при температуре окружающего воздуха от +1 до +50 град.С и относительной влажности до 80% (при 25 град.С)

параметры (характеристики) трансформаторов ТП-100-хх

ТП-125-хх

параметры (характеристики) трансформаторов ТП-125-хх

ТВС-110П3

ТВС-110П3 габаритный чертеж

ТВС-110ЛА

ТВС-110ЛА габаритный чертеж

ТВС-110ПЦ15
  • Номинальное напряжение на выходе высоковольтной обмотки — 8,5 кВ
  • Напряжение питания — 135 В
  • Ток нагрузки — 1,1 мА (на выходе выпрямителя)
  • Рабочая частота — 15,6 кГц

Габаритные размеры и схема включения обмоток ТВС-110ПЦ15 и ТВС-110ПЦ16

Габаритные размеры и схема включения обмоток ТВС-110ПЦ15 и ТВС-110ПЦ16

ТВС-90ЛЦ

Принципиальная электрическая схема ТВС-90ЛЦ

Принципиальная электрическая схема трансформаторов типа ТВС-90ЛЦ

Параметры обмоток ТВС-90ЛЦ5 приведены в таблице ниже:

Обмотка Кол-во витков Провод Сопротивление, Ом
5-2 285 ПЭВ-2 0,29 0,6
3-2 285 ПЭВ-2 0,29 0,6
4-2 10,5 ПЭВ-2 0,29 0,2
2-6 77 ПЭВ-2 0,29 0,8
8-7 77 ПЭВ-2 0,29 0,8
11-12 170 ПЭВ-2 0,35 2,6
12-13 230 ПЭВ-2 0,35 11

Габаритные размеры ТВС-90ЛЦ5

Габаритные размеры ТВС-90ЛЦ5

Применяется для согласования цепей в УНЧ.

Обозначение обмоток Марка провода Количество витков Сопротивление, Ом
1-2-3 (первичная) ПЭЛ-0,09 450х2 70
4-5 (вторичная) ПЭЛ-0,23 100 2,5

Согласующий трансформатор, предназначен для согласования цепей в радиоприемниках, УНЧ.

Обозначение обмоток Марка провода Количество витков Сопротивление, Ом
1-2 ПЭВ-2 0,11 1500 100
4-3-5 ПЭВ-2 0,11 1000 с отводом от середины 82

СТ-1АСТ-1А

ТПП-319-127/220-50 (ТПП319)

Трансформаторы ТПП319 на 220 В выпускаются начиная с 1979г.(обозначаются как ТПП319-220-50), они имеют одну первичную обмотку и такую же нумерацию выводов, как у трансформаторов на 127/220 В.

При подключении трансформатора к сети 220В необходимо соединить выводы 3-9 или 4-8 и подать напряжение на выводы 2 и 7. Если в Ваше сети более 220В и трансформатор греется на холостом ходу, то можно соединить выводы 4-9 (240В), напряжение также подаётся на 2 и 7.

Выводы обмоток Напряжение, В Допустимый ток, А
II (вторичная)
11-12 2,5 8
17-18 2,5 8
13-14 10 8
19-20 10 8
15-16 0,63 8
21-22 0,63 8
I (первичная)
1-2, 6-7 7 2,03 (127В)/1,15 (220В)
2-3, 7-8 100 2,03 (127В)/1,15 (220В)
3-4, 8-9 20 2,03 (127В)/1,15 (220В)
4-5, 9-10 11 2,03 (127В)/1,15 (220В)

Электрическая принципиальная схема трансформатора питания ТПП319 на 50 Гц, 127/220 В

Электрическая принципиальная схема трансформатора питания ТПП319 127/220В 50Гц

Электрическая принципиальная схема трансформатора питания ТПП319 на 50 Гц, 220 В

Электрическая принципиальная схема трансформатора питания ТПП319 220В 50Гц

Конструкция трансформатора питания ТПП319 на 50 Гц, 127/220 В

Конструкция трансформатора питания ТПП319 на 50 Гц, 127/220 В

Виды сердечников

виды сердечников трансформаторов (броневой, тороидальный, стержневой)

Верхний ряд: стержневые (из наборных пластин)
Нижний ряд: ленточные

виды сердечников трансформаторов (броневой, тороидальный, стержневой)

Внешний вид трансформаторов

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: