Типы синхронных генераторов переменного тока

Принцип работы синхронного генератора

Генератор (альтернатор) переменного тока предназначен для того, чтобы преобразовывать механическую энергию в электрическую. Его ротор вращается от первичного двигателя, в качестве которого может служить турбина, ДВС, электродвигатель.

Генератор

Как выглядит синхронный генератор

К синхронным машинам относятся те, у которых ротор имеет одинаковую частоту вращения с магнитным полем:

f – частота сети;

p – количество пар полюсов статора.

Принцип работы

Статор и ротор – главные составные части синхронного генератора (СГ).

Статор

Принцип действия синхронного генератора

Как изображено на рисунке, синхронный генератор чаще всего вырабатывает энергию, когда ротор вращается вместе с магнитным полем, линии которого пересекают статорную обмотку, расположенную неподвижно. Поле создаётся от дополнительного возбудителя (дополнительного генератора, аккумулятора и др. источников).

Процесс может происходить наоборот – вращающийся проводник находится в неподвижном магнитном поле. Здесь появляется проблема токосъёма через коллекторный узел. Для генераторов переменного тока небольшой мощности эта схема вполне подходит. Обычно она применяется в передвижных установках.

В СГ вырабатывается ЭДС:

B – магнитная индукция;

l – длина паза статора;

w – количество витков в статорной обмотке;

D – внутренний диаметр статора.

Основная электроэнергетика построена на напряжении 15-40 кВ. Передача энергии через коллектор СГ затруднительна. К тому же подвижная обмотка подвержена ударным нагрузкам и вращению с переменной скоростью, что создаёт проблемы с изоляцией. Из-за этого, обмотки якоря делают неподвижными, поскольку через них проходит основная энергия. Мощность возбудителя не превышает 5% от общей мощности СГ. Это позволяет проводить ток через подвижный узел.

В машинах переменного тока небольшой мощности (несколько киловатт) ротор изготавливают с постоянными магнитами (неодимовыми и др.). Здесь не требуется установка подвижных контактов, но тогда возникают сложности с регулированием напряжения на выходе.

Устройство генератора

Статор имеет общий принцип действия с асинхронником и мало отличается от него. Его железо собирается из пластин электротехнической стали, разделённых изолирующими слоями. В пазах размещается обмотка переменного тока. Наиболее распространён трёхфазный синхронный генератор. Провода обмоток надёжно крепятся и изолируются, поскольку через них подключается нагрузка.

Ротор выполняется с явно выраженными полюсами или без выступающих полюсов.

Полюс

Виды полюсов синхронного генератора: а) – выступающие; б – неявно выраженные

Первые делаются для тихоходных машин, например, с гидравлическими турбинами. Для вращающихся с большой скоростью генераторов переменного тока принцип действия заключается в применении более прочных неявно выраженных полюсов.

СГ может работать в режимах двигателя или генератора переменного тока. Важно, какой здесь применяется способ охлаждения. Обычно на валу устанавливаются крыльчатки, охлаждающие ротор с обеих сторон. Воздух перед вентиляцией проходит через фильтр. В замкнутой системе циркулирует один и тот же воздух, проходя через теплообменники.

Более эффективным охлаждающим агентом является водород, в 14,5 раз более лёгкий, чем воздух. Принцип охлаждения у него аналогичный.

Обмотки генератора переменного тока выводятся концами на его распределительную коробку. Для трёхфазных – соединение производится в звезду или в треугольник.

Синхронный генератор преимущественно обеспечивает поддерживание синусоидального переменного напряжения. Это достигается изменением формы полюсных наконечников, а неявнополюсный ротор имеет определённое расположение витков в его пазах.

Реакция якоря

При соединении выхода с внешней нагрузкой в обмотках статора протекает электрический ток. Образующееся магнитное поле накладывается на поле, которое создаёт ротор.

Якорь

Реакция якоря при разных видах нагрузки

При активной нагрузке ток и ЭДС совпадают по фазам (изображено на рисунке выше – а). Он становится максимальным, если полюса ротора располагаются напротив якорных обмоток. Основной магнитный поток и образующийся от реакции якоря перпендикулярны и при наложении образуют несколько больший результирующий поток, увеличивающий ЭДС.

Индуктивная нагрузка приводит к снижению ЭДС, поскольку потоки направлены встречно (изображено на рисунке выше – б).

Ёмкостная нагрузка вызывает совпадение направлений потоков, в результате чего ЭДС увеличивается.

Увеличение нагрузки приводит к большей реакции якоря, приводящей к изменению выходного напряжения, что нежелательно. На практике этот процесс управляется изменением возбуждения, что снижает степень воздействия реакции якоря на основное поле.

Режимы работы СГ

Нормальные режимы работы характеризуются сколько угодно длительными периодами времени. В их число входят отклонения коэффициентов мощности, выходного напряжения до 5% и частоты до 2,5% от номиналов и т. п. Допуски на отклонения определяются нагревом агрегатов и задаются стандартами или гарантируются производителями.

А нормальные режимы функционирования неприемлемы для продолжительной работы и связаны с появлением перегрузок, с недовозбуждением, переходами в асинхронные режимы. Этот режим работы связан с отклонениями в сети: короткими замыканиями, нагрузками переменного действия, неравномерностью загрузки фаз.

На нормально работающее устройство оказывает влияние подключённая сеть, где нарушения функционирования отдельных потребителей вызывают несимметрию и искажения формы сигнала. Из-за этого могут перегреваться обмотки или конструкция генератора.

Продолжительная работа генератора возможна при различии фазных токов на турбогенераторах до 10% и до 20% на синхронных компенсаторах и гидрогенераторах.

Искажение синусоиды на СГ происходит из-за мощных выпрямителей, преобразователей, электротранспорта и т. д.

Важно для синхронных машин, чтобы нормально работала система охлаждения. Если затраты охлаждающей воды достигают 70% от номинала, срабатывает сигнализация предупреждения. Если расход охладителя снижается наполовину, устройство должно разгружаться за 2 мин, а затем отключаться не более чем за 4 мин.

Характеристики генератора:

  1. при холостом ходе, когда обмотка якоря не замкнута, устанавливается зависимость ЭДС от токов возбуждения, а также определяется показатель намагничивания сердечников машины;
  2. внешняя характеристика – зависимость выходного напряжения от нагрузочных токов;
  3. регулировочные характеристики, проявляющиеся в зависимости токов возбуждения от нагрузочных при автоматическом поддерживании заданных выходных параметров.

Виды генераторов

Генераторы отличаются способами возбуждения. В автономных установках на транспорте, в авиации, на судах применяется самовозбуждение за счёт остаточного намагничивания. Способ отличается надёжностью и удобством применения. Распространённым вариантом здесь является отбор энергии от статорной обмотки, которая проходит через понижающий трансформатор и полупроводниковый преобразователь ПП, в результате чего на обмотку возбуждения через коллектор поступает постоянный ток (изображено на рисунке ниже – а).

Схема

Принцип самовозбуждения синхронного генератора

Другая схема реализует самовозбуждение также путём подачи переменного тока со статорной обмотки через выпрямительный трансформатор ВТ и тиристор ТП в обмотку возбуждения ОВ (изображено на рисунке выше – б). Тиристором автоматически управляет регулятор возбуждения АРВ по сигналам от входа генератора СГ через трансформаторы напряжения ТН и тока ТТ. Блок защиты БЗ не допускает образования на обмотке возбуждения повышенного напряжения и перегрузочного тока.

Другая конструкция содержит дополнительную синхронную или асинхронную машину с возбуждением от статорных обмоток. На рисунке ниже изображена такая система СГ с обмоткой возбуждения ОВ и трёхфазной обмоткой статора. При этом ротор основного генератора имеет общий вал с якорными обмотками возбуждения ОВ1 и ОВ2 дополнительного подвозбудителя ПВ. Ток возбуждения регулируется реостатами r1 и r2. Устройство не уступает по быстродействию установкам с самовозбуждением, но конструкция у него более сложная, а габариты больше.

Схема

Система возбуждения с дополнительным генератором

Читайте также  Автоколебательный генератор незатухающих электромагнитных колебаний это

Применяется также бесконтактная система возбуждения, где у СГ нет подвижных контактов для передачи энергии. Щётки с коллектором имеют только подвозбудитель ПВ, который питает пост

Схема

Бесконтактная система возбуждения синхронного генератора

оянным током обмотку I возбудителя В.

Видео. Синхронные машины

Можно отметить следующие современные направления в развитии технологии производства синхронных машин:

Синхронные генераторы. Конструкция синхронных генераторов. Принцип действия синхронного генератора

Синхронными машинами называются электрические машины пе­ременного тока, у которых магнитное поле, созданное обмоткой переменного тока, вращается в пространстве с той же частотой, что и ротор, т. е. синхронно с ротором.

В настоящее время подавляющее большинство электрической энергии переменного тока вырабатывается с помощью синхрон­ных генераторов. Генераторы, приводимые во вращение гидро­турбинами, называются гидрогенераторами. На тепловых стан­циях с помощью паровых турбин приводят во вращение турбо­генераторы. Во всевозможных промышленных установках можно встретить синхронные генераторы, приводимые во вращение дви­гателями внутреннего сгорания. Во всех перечисленных случаях механическая энергия турбин или двигателей превращается в электрическую энергию переменного тока.

Частота f1 энергии переменного тока, вырабатываемой син­хронными генераторами, зависит от частоты вращения ротора n1 и числа пар полюсов р:

f1=pn1/60.

Однако в современной технике синхронные машины исполь­зуют не только в качестве генераторов. В силовом электропри­воде, в устройствах автоматики, в устройствах звукозаписи при­меняют большое количество синхронных машин, работающих в двигательном режиме,— синхронных двигателей.

Основная особенность синхронного двигателя — при постоян­ной частоте тока питающей сети f1 его ротор вращается со строго постоянной (синхронной) частотой вращения

3.1.2. Конструкция синхронных генераторов

Любая синхронная машина состоит из двух основных частей: неподвижного статора и вращающегося ротора (рис. 1). Ста­тор и ротор разделены воздушным зазором, который у крупных синхронных машин обычно значительно больше, чем у асинхронных машин, одинаковых по мощности.

По конструкции статор синхронной машины принципиальо не отличается от статора асинхронной машины. Сердечник статора 1 набирают из штампованных изолированных листов электротехнической стали. В пазах статора размещают распределенную обмотку переменного тока 2 (обычно трехфазную). На валу 4 укрепляют ротор 3 с обмоткой возбуждения.

Рис.1. Устройство явнополюсной синхронной машины

Концы этой обмотки подводят к контактным кольцам 5. Для подачи постоянного тока в обмотку возбуждения по контактным кольцам скользят щетки 6. Источником постоянного тока в рассматриваемой машине служит возбудитель 7, представляющий собой генератор постоянного тока, якорь которого укреплен на общем валу с ротором синхронной машины.

Постоянный ток, проходя по обмотке возбуждения, создает магнитное поле ротора — поле возбуждения.

Роторы синхронных генераторов бывают с явно выраженными и неявно выраженными полюсами.

Явнополюсный ротор (рис.2) состоит из вала 1, на кото­ром укреплены сердечники полюсов с полюсными катушками 2. Сердечники полюсов заканчиваются полюсными наконечниками 3, которые обычно обрабатывают таким образом, чтобы воздушный зазор между полюсным наконечником и статором получался не­равномерным. Он минимален под серединой полюса и максимален у его краев (рис.3, ). Делается это для того, чтобы кри­вую магнитной индукции Bo в воздушном зазоре, имеющую форму трапеции при равномерном зазоре 1, максимально приблизить к синусоиде 2.

Синхронные машины с явно выраженными полюсами обычно многополюсные. Они, как правило, рассчитываются на небольшие частоты вращения. Так, гидрогенератор Куйбышевской ГЭС имеет 88 полюсов (2р=88) и вращается с частотой n1=68,3 об/мин.

Рис. 2. Явнополюсный ротор Рис. 3. Распределение

магнитной индукции в зазо­ре

Гидрогенераторы всегда явнополюсные. Так как при малых частотах вращения n1 (которые развивает гидротурбина) гидро­генераторы должны выдавать электроэнергию промышленной час­тоты 50 Гц, то они должны иметь большое число пар полюсов:

Роторы гидрогенераторов имеют большой диаметр (для разме­щения полюсов) и малую длину.

Турбогенераторы являются быстроходными синхронными маши­нами. Объясняется это высокой частотой вращения паровых тур­бин, к. п. д. которых возрастет с увеличением частоты вращения. Обычно турбогенераторы делаются двухполюсными (2р = 2) и име­ют частоту вращения n1 = 3000 об/мин.

При такой большой частоте вращения явнополюсная конструк­ция ротора непригодна из-за недостаточной механической прочно­сти. Поэтому турбогенераторы имеют неявнополюсный ротор — ко­ваный стальной цилиндр с профрезерованными продольными паза­ми для укладки обмотки возбуждения (см. рис. 7). Неявнополюсные роторы имеют сравнительно небольшой диаметр при зна­чительной длине.

В синхронных машинах применяются два способа возбуждения: электромагнитное возбуждение и возбуждение постоянными маг­нитами.

В зависимости от способа питания обмотки возбуждения постоянным током различают независимое возбуждение и самовозбуждение.

При независимом возбуждении для получения постоянного тока применяют возбудитель В (см. рис. 1), который располагается на одном валу с синхронной машиной и представляет собой гене­ратор постоянного тока, мощность которого не превышает 2-5% от мощности синхронной машины.

При самовозбуждении для питания обмотки возбуждения постоянным выпрямленным током, получаемым от генератора, используются выпрямители.

В случае возбуждения постоянными магнитами ротор не имеет обмотки возбуждения, а его полюсы представляют собой постоянный магнит. Это дает возможность получить машину без контактных колец, а следовательно, повысить ее надежность и к. п. д.

На полюсных наконечниках явно выраженных полюсов ротора имеются пазы, в которых укладывают стержни демпферной (успокоительной) короткозамкнутой обмотки, выполняемой по типу короткозамкнутой обмотки ротора асинхронных машин. Эта обмотка служит для успокоения ротора (уменьшения качаний) в генераторах, а также для пуска в синхронных двигателях.

Синхронные машины небольшой мощности иногда выполняют обращенными (по типу машин постоянного тока). У таких машин обмотка переменного тока размещается в пазах ротора и выводит­ся к трем контактным кольцам, а обмотка возбуждения размеща­ется на явно выраженных полюсах статора. Мощными эти машины не делаются, так как при такой конструкции через контактные кольца приходится пропускать большой переменный ток (основной ток машины) при высоком напряжении, тогда как в машинах обыч­ного исполнения через контактные кольца ротора проходит небольшой по величине ток возбуждения при напряжении до 440 В.

Синхронные двигатели малых мощностей весьма разнообразны по конструкции.

3.1.3. Принцип действия синхронного генератора

Синхронные генераторы в зависимости от типа обмотки статора могут быть одно-, двух- и трехфазными. Наибольшее распространение получили трехфазные генераторы. На рис.4 представлена электромагнитная схема такого генератора. Трехфазная обмотка статора состоит из трех однофазных обмоток, равномерно распре­деленных по статору и сдвинутых в пространстве на 120° относи­тельно друг друга (рис.4). Посредством первичного двигателя, в качестве которого применяются турбины (паровые или гидрав­лические), двигатели внутреннего сгорания или электродвигатели, ротор генератора приводится во вращение с частотой n1.

2.1. Конструкции синхронных генераторов

Фактически вся промышленная электрическая энергия в стране вырабатывается на тепловых (ТЭС), гидравлических (ГЭС) и атомных (АЭС) электростанциях. В разных странах доля электроэнергии, производимой на электростанциях различного вида, неодинакова. В России в настоящее время тепловые электростанции дают примерно 69—70%, атомные и гидравлические — по 15% общего количества электроэнергии. Стоимость единицы вырабатываемой электроэнергии на станциях этих трех видов может резко различаться. Различны капитальные затраты при их сооружении, расходы на эксплуатацию, уровень автоматизации, степень надежности, зависимость от сезона и особенностей их климатического и географического расположения и многих других обстоятельств. Объединяет их только одно. Они обязаны вырабатывать ток стандартной частоты 50 периодов в секунду, или 50Гц, необходимого уровня напряжения для той сети, к которой присоединяются электрические машины, работающие в режиме генераторов переменного тока, установленных на каждой из станций.

Читайте также  Таблетка в генераторе лада калина

Абсолютное равенство частот напряжения сотен одновременно работающих генераторов может быть обеспечено только электри­ческими машинами специального типа — синхронными генераторами, работа­ющи­ми одновременно в ритме единого времени со строго определенными частотами вращения своих подвижных частей, называемых роторами. Следует отметить, что все электрические машины обладают свойством обратимости. Любой электрический генератор может работать как двигатель, т.е. преобразовывать электрическую энергию в механическую. На каждой электростанции установлено большое число электродвигателей, удовлетворяющих собственные нужды станции.

Синхронные генераторы (СГ), предназначенные для преобразования механической энергии паровой, газовой или гидравлической турбины, вращающей ротор СГ, в электрическую энергию, имеют неподвижную часть, называемую статором.

Подвижная часть генератора (ротор) может быть выполнена с сосредоточенной обмоткой. В этом случае ротор и сам генератор называются явнополюсными. Если обмотка ротора является распределенной, ротор и генератор называются неявнополюсными.

На рис. 2.1 схематично показано поперечное сечение синхронной явнополюсной машины с четырьмя полюсами на роторе 2 чередующейся полярности N-S-N-S. Сосредоточенная обмотка возбуждения 4, размещенная на роторе, обтекается постоянным током, возбуждающим магнитное поле ротора. Ротор приводится во вращение источником механической энергии. Чаще всего — это паровая, газовая или гидравлическая

турбина, создающая механический вращающий момент. Частота вращения турбины может быть различной — от десятков до сотен и даже тысяч оборотов в минуту. Меньшие значения частот вращения относятся к гидравлическим турбинам, большие — к турбинам остальных видов.

Постоянный ток на вращающуюся обмотку возбуждения 4 подается через контактные кольца 5.

При вращении ротора магнитное поле обмотки возбуждения перемещается относительно неподвижной обмотки статора 3, размещенной в пазах сердечника статора 1, что вызывает (индуктирует) в обмотке электродвижущую силу (ЭДС).

Частота ЭДС (f1) равна произведению частоты вращения ротора (n2) в оборотах в секунду на число пар полюсов ротора (р):

Для нашего примера (см. рис. 3.1) p = 2, т.е. число полюсов 2р = 4.

Синхронные генераторы, вращаемые паро- и газо­выми турбинами, называются турбо­генера­торами, а враща­емые гидрав­лическими турбинами — гидрогенераторами.

Большинство турбогенераторов страны имеют число пар полюсов равное единице. Значит, для сети 50Гц

n2 = f1 /р = 50 с -1 или n2 = 60 f1 /р = 3000об/мин.

Для стран, где принята частота напряжения 60Гц (США, Япония и др.), частота

вращения ротора составляет 3600об/мин. Для генераторов с большим, чем единица, числом пар полюсов частота вращения роторов будет частным от деления 3000 (или 3600) на число пар полюсов, об/мин:

1500, 1000, 750, 600 и т.д. (для 50Гц)

1800, 1200, 900, 720 и т.д. (для 60Гц).

Внешний вид явнополюсного ротора (2р = 12) и его поперечный разрез представлены на рис. 2.2.

Неявнополюсный ротор, у которого обмотка возбуждения не сосредоточенная, а распределенная по пазам, показан на рис. 2.3.

Такие роторы применяются в турбогенераторах, при этом число пар полюсов равно единице, реже — двум. Явнополюсная синхронная машина, приводимая во вращение гидравлической турбиной, т.е. гидрогенератор (рис. 2.4), чаще всего имеет вертикально ориентированный вал и «подвешена» на подпятник, воспринимающий не только массы генератора, гидротурбины, но и осевое давление воды на лопасти гидротурбины.

Турбогенератор, вращаемый паровой или газовой турбиной, имеет горизонтально расположенный вал (рис. 2.5), опирающийся на два подшипника скольжения.

Масса электрической машины возрастает с уменьшением частоты ее вращения. Гидрогенераторы имеют частоту вращения, примерно в 6—60 раз меньшую, чем турбогенераторы. Эта разница обусловлена различием типов применяемых в этих машинах паровых, газовых и гидравлических турбин, а также зависит от характера используемых для ГЭС водных источников (расхода воды, уклона водопотока, рельефа местности при учете экономической целесообразности эксплуатируемой зоны). Из-за более низких частот вращения гидроагрегатов общие массы гидрогенераторов достигают 1,5—2 тыс.т и в несколько раз превышают массы аналогичных по мощности турбогенераторов. Это делает невозможным применение горизонтального расположения валов с более простыми подшипниками скольжения.

Диаметры роторов турбогенераторов, вращающихся со скоростью 50с -1 , не превышают 1,1—1,25м при длине ротора до 8м. Роторы гидрогенераторов достигают в диаметре 15—20м при длине до 5м.

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Конструкция синхронных генераторов

Любая синхронная машина состоит из двух основных частей: неподвижного статора и вращающегося ротора (рис. 4.1). Статор и ротор разделены воздушным зазором, который у крупных синхронных машин обычно значительно больше, чем у асинхрон­ных машин, одинаковых по мощности.

Рис. 4.1. Устройство явнополюсной синхронной машины

По конструкции статор синхронной машины принципиально не отличается от статора асинхронной машины (см. § 8.1). Сердечник статора 1 набирают из штампованных изолированных листов электротехнической стали. В пазах статора размещают распределенную обмотку переменного тока 2 (обычно трехфазную). На валу 4 укрепляют ротор 3 с обмоткой возбуждения.

Концы этой обмотки подводят к контактным кольцам 5. Для подачи постоянного тока в обмотку возбуждения по контактным кольцам скользят щетки 6. Источником постоянного тока в рассматриваемой машине служит возбудитель 7, представляющий собой генератор постоянного тока, якорь которого укреплен на общем валу с ротором синхронной машины.

Постоянный ток, проходя по обмотке возбуждения, создает магнитное, поле ротора – поле возбуждения.

Роторы синхронных генераторов бывают с явно выраженными и неявно выраженными полюсами.

Явно полюсный ротор (рис. 4.2) состоит из вала 1, на котором укреплены сердечники полюсов с полюсными катушками 2. Сердечники полюсов заканчиваются полюсными наконечниками 3, которые обычно обрабатывают таким образом, чтобы воздушный зазор между полюсным наконечником и статором получался неравномерным. Он минимален под серединой полюса и максимален у его краев (рис. 4.3, ). Делается это для того, чтобы кривую магнитной индукции В в воздушном зазоре, имеющую форму трапеции при равномерном зазоре 1, максимально приблизить к синусоиде 2.

Рис. 4.2. Явнополюсный ротор Рис. 4.3. Распределение магнитной индукции

в зазоре синхронной машины

Синхронные машины с явно выраженными полюсами обычно многополюсные. Они, как правило, рассчитываются на небольшие частоты вращения. Так, гидрогенератор Куйбышевской ГЭС имеет 88 полюсов
(2р = 88) и вращается с частотой n1= 68,3 об/мин.

Гидрогенераторы всегда явно полюсные. Так как при малых частотах вращения n1 (которые развивает гидротурбина) гидрогенераторы должны выдавать электроэнергию промышленной час­тоты 50 Гц, то они должны иметь большое число пар полюсов:

Роторы гидрогенераторов имеют большой диаметр (для размещения полюсов) и малую длину.

Турбогенераторы являются быстроходными синхронными машинами. Объясняется это высокой частотой вращения паровых турбин, к. п. д. которых возрастет с увеличением частоты вращения. Обычно турбогенераторы делаются двухполюсными (2р=2) и имеют частоту вращения n1 =3000 об/мин.

При такой большой частоте вращения явнополюсная конструкция ротора непригодна из-за недостаточной механической прочно­сти. Поэтому турбогенераторы имеют неявнополюсный ротор – кованый стальной цилиндр с профрезерованными продольными пазами для укладки обмотки возбуждения (риса. 4.4, б). Неявнополюсные роторы имеют сравнительно небольшой диаметр при значительной длине.

Рис. 4.4. Магнитная цепь синхронной машины

В синхронных машинах применяются два способа возбуждения: электромагнитное возбуждение и возбуждение постоянными магнитами.

В зависимости от способа питания обмотки возбуждения посто­янным током различают независимое возбуждение и самовозбуж­дение.

Читайте также  Съемник подшипников генератора форсе

При независимом возбуждении для получения постоянного тока применяют возбудитель В (см. рис. 4.1), который располагается на одном валу с синхронной машиной и представляет собой генератор постоянного тока, мощность которого не превышает от мощности синхронной машины.

При самовозбуждении для питания обмотки возбуждения постоянным выпрямленным током, получаемым от генератора, используются выпрямители.

В случае возбуждения постоянными магнитами ротор не имеет обмотки возбуждения, а его полюсы представляют собой постоянный магнит. Это дает возможность получить машину без контактных колец, а, следовательно, повысить ее надежность и к. п. д.

На полюсных наконечниках явно выраженных полюсов ротора имеются пазы, в которых укладывают стержни демпферной (успокоительной) короткозамкнутой обмотки, выполняемой по типу короткозамкнутой обмотки ротора асинхронных машин (см. рис. 8.5, а). Эта обмотка служит для успокоения ротора (уменьшения качаний) в генераторах, а также для пуска в синхронных двигателях.

Синхронные машины небольшой мощности иногда выполняют обращенными (по типу машин постоянного тока). У таких машин обмотка переменного тока размещается в пазах ротора и выводится к трем контактным кольцам, а обмотка возбуждения размешается на явно выраженных полюсах статора. Мощными эти машины не делаются, так как при такой конструкции через контактные кольца приходится пропускать большой переменный ток (основной ток машины) при высоком напряжении, тогда как в машинах обычного исполнения через контактные кольца ротора проходит небольшой по величине ток возбуждения при напряжении до
440 В.

§86. Назначение и принцип действия синхронной машины

Назначение. Синхронные машины используют в качестве генераторов и двигателей. Синхронные генераторы вырабатывают электрическую энергию трехфазного тока. Почти все генераторы переменного тока, устанавливаемые на больших и малых электрических станциях, являются синхронными. Мощность этих генераторов может быть самая различная, начиная от нескольких киловольт-ампер (на передвижных электростанциях) и кончая несколькими сотнями тысяч киловольт-ампер (на мощных центральных электростанциях). В Советском Союзе создан самый большой в мире синхронный генератор мощностью 1200 тыс. кВ*А. Синхронные двигатели используют, главным образом, для мощных электрических приводов. Синхронные генераторы применяют на тепловозах с электрической передачей переменно-постоянного тока. На этих тепловозах напряжение, полученное от синхронного генератора, выпрямляется полупроводниковыми преобразователями и подается на тяговые двигатели постоянного тока.

Принцип действия. На статоре 2 синхронной машины располагается трехфазная обмотка 1 (рис. 283,а), а на роторе 4 — полюсы (электромагниты) с обмоткой, питаемой постоянным током через контактные кольца 3 и щетки. Обмотка 5 полюсов, создающая магнитный поток возбуждения машины, называется обмоткой

Рис. 283. Электромагнитная схема синхронной машины (а), и схемы ее включения (б и в): 1—трехфазная обмотка статора; 2— ротор; 3— обмотка возбуждения; 4, 5 — обмотки якоря

Рис. 283. Электромагнитная схема синхронной машины (а), и схемы ее включения (б и в): 1—трехфазная обмотка статора; 2— ротор; 3— обмотка возбуждения; 4, 5 — обмотки якоря

возбуждения. Статор синхронной машины ничем не отличается от статора асинхронной машины; его обмотка имеет три (в двухполюсной машине), шесть (в четырехполюсной) или большее число катушек, сдвинутых одна относительно другой на соответствующие углы (120° или 60° и т. д.). При вращении ротора 4 с некоторой частотой n поток возбуждения пересекает проводники обмотки статора и индуцирует в ее фазах переменную э. д. с. Е1, изменяющуюся с частотой

Благодаря тому что обмотки трех фаз синхронного генератора сдвинуты в пространстве на угол 120°, индуцируемые в них э. д. с. будут сдвинуты одна относительно другой по фазе на 1/3 периода. Если к обмотке статора подключить какую-либо нагрузку, то протекающий по этой обмотке трехфазный ток создает вращающееся магнитное поле, частота вращения которого

Из формул (86) и (87) следует, что n = n1, т. е. ротор вращается с той же частотой, что и магнитное поле статора. По этой причине рассматриваемая машина называется синхронной. В такой машине результирующий магнитный поток Фрез создается совместным действием магнитодвижущих сил обмотки возбуждения и обмотки статора и вращается в пространстве с той же частотой вращения, что и ротор.

В синхронной машине обмотка 1 (рис. 283,б), в которой индуцируется э. д. с. и протекает ток нагрузки, называется обмоткой якоря, а часть машины, на которой расположена обмотка возбуждения,— индуктором. Следовательно, в машине, выполненной по схеме, показанной на рис. 283, статор является якорем, а ротор — индуктором. С точки зрения принципа действия и теории работы машины безразлично — вращается якорь или индуктор, поэтому в некоторых случаях применяют синхронные машины с обращенной электромагнитной схемой: у них обмотка якоря, к которой подключается нагрузка, располагается на роторе, а обмотка возбуждения, питаемая постоянным током,— на статоре.

Обмотка якоря обычно имеет семь выводов: от начал А, В, С и концов X, Y, Z фаз и от нулевой точки 0. Это дает возможность соединять фазы и подключать к ним нагрузку по различным схемам: «звезда», «звезда с нулевым проводом» и «треугольник».

Таким образом, синхронная машина имеет следующие особенности: ротор машины, работающей как в двигательном, так и в генераторном режимах, вращается с постоянной частотой вращения, равной частоте вращения вращающегося магнитного поля, т. е. n = n1; в обмотке ротора э. д. с. не индуцируется, а магнитное поле создается постоянным током, подводимым от внешнего источника, или постоянными магнитами.

Синхронные генераторы тепловозов с электропередачей переменно-постоянного тока имеют две обмотки якоря 6 и 7 (рис. 283, в), фазы которых OA и О’А’, ОВ и О’В’ и ОС и О’С’ сдвинуты на 30°. Выводы обмоток якоря подключены к полупроводниковому выпрямителю. В результате сдвига фаз обмоток якоря существенно уменьшается пульсация напряжения и тока на выходе выпрямителя, что улучшает работу тяговых двигателей постоянного тока (см. главу III).

Возбуждение синхронной машины. В качестве источника постоянного тока для питания обмотки возбуждения 1 синхронной машины может служить генератор постоянного тока 4 (возбудитель), установленный на валу ротора синхронной машины (рис. 284, а), или полупроводниковый выпрямитель 5, присоединенный к обмотке якоря 2 (рис. 284,б). Питание обмотки возбуждения от полупроводникового выпрямителя все более широко применяется как в двигателях и генераторах небольшой и средней мощности, так и в мощных турбо- и гидрогенераторах. Регули-

Рис. 284. Схемы питания обмотки возбуждения от возбудителя (а) и от полупроводникового выпрямителя (б)

Рис. 284. Схемы питания обмотки возбуждения от возбудителя (а) и от полупроводникового выпрямителя (б)

рование тока возбуждения осуществляется вручную регулировочным реостатом 3, включенным в цепь обмотки возбуждения, или автоматически специальными регуляторами. Мощность, необходимая для возбуждения, составляет 0,3—3 % мощности синхронной машины, поэтому возбудитель или выпрямитель имеет малые размеры по сравнению с синхронной машиной.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: