Типы нагрузок синхронных генераторов

Принцип работы синхронного генератора

Синхронный генератор. Устройство генератора и принцип действия

Синхронный генератор – машина (механизм) переменного тока, которая преобразовывает определенный тип энергии в электроэнергию.

К таким устройствам относят электростатические машины, гальванические элементы, солнечные батареи, термобатареи и т. п. Использование каждого вида из перечисленных приборов определяется их техническими характеристиками.

Область применения

Применяют синхронные агрегаты как источники электроэнергии переменного тока: используют на мощных тепло-, гидро- и атомных станциях, на передвижных электрических станциях, транспортных системах (машинах, самолетах, тепловозах).

Синхронный агрегат способен работать автономно – генератором, который питает подключаемую к ней какую-либо нагрузку, либо параллельно с сетью — в нее подключены иные генераторы.

Синхронный агрегат может включать устройства в тех местах, где нет центрального питания электрических сетей. Данные приборы можно применять в фермерских хозяйствах, которые расположены далеко от населенных пунктов.

Описание прибора

Устройство синхронного генератора:

  • Ротор, или индуктор (подвижный, вращающийся), в который входит обмотка возбуждения.
  • Якорь, или статор (недвижимый), в который включается обмотка.
  • Обмотка агрегата.
  • Переключатель катушки статора.
  • Выпрямитель.
  • Несколько кабелей.
  • Структура электрического компаундирования.
  • Сварочный аппарат.
  • Катушка ротора.
  • Регулируемый поставщик постоянного электротока.

Синхронный генератор работает в качестве генераторов и моторов. Он может переходить от графика работы генератора к графику двигателя – это зависит от действия вращающей либо тормозящей силы прибора. В графике генератора в него входит механическая, а исходит электроэнергия. В графике двигателя в него входит электрическая, а исходит механическая энергия.

Прибор включается в цепь переменного тока разного типа нелинейных сопротивлений. Синхронные агрегаты являются генераторами переменного тока на электростанциях, а синхронные моторы используются тогда, когда необходим двигатель, что работает с постоянной крутящейся частотой.

Принцип работы агрегата

Работа синхронного генератора осуществляется по принципу электромагнитной индукции.

Во время холостого движения якорная (статорная) катушка разомкнута, поэтому магнитное поле агрегата формируется одной обмоткой ротора. Когда ротор крутится от проводного мотора, у него присутствует постоянная частота, роторное магнитное поле перемещается через проводники обмоток фаз статора и осуществляет наводку повторяющихся переменных токов – электродвижущую силу (ЭДС).

ЭДС носит синусоидальный, несинусоидальный либо пульсирующий характер.

Обмотка возбуждения предназначается для создания в генераторе первоначального магнитного поля, чтобы навести в катушку якоря электрическую движущую силу. В случае если якорь синхронного генератора приводят в движение путем вращения с определенной скоростью, затем возбуждают источником постоянных токов, то поток возбуждения переходит через проводники катушек статора, и в фазах катушки индуцируются переменные ЭДС.

Трехфазное устройство

Трехфазный синхронный генератор – устройство, имеющее трехфазную структуру переменного тока, которая имеет огромное практическое распространение. Крутящийся электромагнит способен образовывать магнитный поток (переменный), который перемещается через три фазы обмотки имеющегося статора.

Результатом этого является то, что в фазах происходит переменная ЭДС однотипной частоты, сдвиг фаз осуществляется под углом, равным одной третьей периода вращения магнитных полей.

Трехфазный синхронный генератор оборудован так, что на его валу якорь является электромагнитом и питается от генератора. Когда вал вращается, к примеру, от турбины, генератор поставляет электроток, в то время как обмотка ротора питается поставляемым током. От этого якорь становится электрическим магнитом и, осуществляя обороты с тем же валом, доставляет вращающееся электромагнитное поле.

Благодаря синхронным трехфазным гидро- и турбогенераторам производится большая часть электроэнергии.

Синхронные агрегаты применяются и в качестве электромоторов в таких устройствах, у которых мощность превышает 50 кВт. Во время работы синхронного агрегата в графике двигателя сам ротор соединяют с источником постоянных токов, статор же подключают к трехфазному кабелю.

Структуры возбуждения

Любые турбо-, гидро-, дизельные генераторы, синхронные компенсаторы, моторы, производимые на данный момент, оснащаются новейшими полупроводниковыми структурами, такими как возбуждение синхронных генераторов.

В данных структурах применяется метод выпрямления трехфазных переменных токов возбудителей высокой или промышленной частоты либо напряжения возбуждаемого агрегата.

Устройство генератора таково, что структуры возбуждения могут обеспечить такие параметры работы агрегата, как:

  • Первая стадия возбуждения, то есть начальная.
  • Работа вхолостую.
  • Подключение к сети способом точной синхронизации либо самосинхронизации.
  • Работа в энергетической структуре с имеющимися нагрузками или перегрузками.
  • Возбуждение синхронных приборов может быть форсировано по таким критериям, как напряжение и ток, имеющими заданную кратность.
  • Электроторможение аппарата.

Разновидности агрегатов

Синхронный генератор (мотор) подразделяется на несколько моделей, которые предназначены для разнообразных целей:

  • Шаговые (импульсные) – применяются для приводов механизмов с циклом работы старт-стоп или устройств непрерывного движения с импульсным управляющим сигналом (счетчиков, лентопротяжных устройств, приводов станков с ЧПУ и др.).
  • Безредукторные – для применения в автономных системах.
  • Бесконтактные – применяются для работы в качестве электростанций на судах морского и речного флота.
  • Гистерезисные – используются для счетчиков времени, в инерционных электроприводах, в системах автоматического управления;
  • Индукторные моторы – для снабжения электроустановок.

Принцип действия синхронного трёхфазного генератора

Универсальный синхронный трёхфазный генератор представлен в виде специфического механизма переменного тока, который призван преобразовывать определённый тип энергии в электричество.

Именно этот агрегат отвечает за работоспособность солнечных батарей, электростатических машин, а также гальванических элементов.

На практике использование этих устройств определяется исключительно техническими характеристиками.

Электрические машины — Работа на автономную нагрузку

Работа синхронного генератора на автономную нагрузку (рис. 5.19) является простейшей рабочей схемой. Подобная схема работы синхронного генератора наиболее часто встречается у машин сравнительно небольшой мощности ().

Поведение генератора при работе на автономную нагрузку может быть исследовано аналитическими или графоаналитическими методами (см. п. 5.6 и 5.7). Наряду с теоретическими методами существует экспериментальный метод, который позволяет наиболее полно и точно исследовать поведение генератора при работе на автономную нагрузку. При экспериментальном исследовании снимают пять характеристик генератора: характеристику холостого хода, короткого замыкания, внешнюю, регулировочную и нагрузочную. Эти характеристики дают представление о свойствах генератора и позволяют определить его параметры.

Характеристика холостого хода

Характеристика холостого хода при и определяет состояние магнитной цепи генератора. Для получения характеристики холостого хода ротор генератора вращают с номинальной частотой. Ток возбуждения генератора изменяют от нуля до некоторого максимального значения, соответствующего , а затем обратно от максимума до нуля. Вследствие явления гистерезиса и остаточного намагничивания характеристика холостого хода имеет вид узкой петли (рис. 5.20). За характеристику холостого хода принимают среднюю линию. Точка пересечения этой характеристики с осью ординат определяет остаточную ЭДС генератора .
При практическом использовании характеристики холостого хода она экстраполируется до пересечения с осью абсцисс и перемещается в начало координат. В таком виде она строится в относительных единицах. Базисному напряжению соответствует по характеристике холостого хода базисный ток возбуждения (рис. 5.21). Характеристики холостого хода современных синхронных машин в относительных единицах мало отличаются между собой и их можно представить следующей усредненной («нормальной») характеристикой:

По характеристике холостого хода определяется степень насыщения магнитопровода при номинальном напряжении:
,
а также совместно с другими характеристиками, ряд параметров генератора.

Характеристика короткого замыкания

Характеристика короткого замыкания снимается при замыкании всех трех фаз обмотки якоря накоротко () и при номинальной частоте вращения . Опыт начинается с наибольшего тока , постепенно снижаемого до нуля. Как следует из схемы замещения (рис. 5.11), ток короткого замыкания
.
Если пренебречь активным сопротивлением якоря (), то внутреннее сопротивление якоря генератора в режиме короткого замыкания будет чисто индуктивным. Поэтому он будет содержать только продольную составляющую
,

создавая размагничивающую реакцию якоря (рис.5.22). Суммарная МДС уменьшается и, следовательно, уменьшается результирующий поток . Определяемая этим потоком ЭДС численно равна ЭДС рассеяния

Читайте также  Аналог генератора для чери амулет

,
поскольку сумма всех ЭДС в режиме короткого замыкания равна нулю.
В относительных единицах при номинальном токе
.
Сопротивление мало (). Поэтому в режиме короткого замыкания при токах статора, близких к номинальному, магнитная цепь генератора не насыщена, а следовательно, характеристика короткого замыкания является линейной (рис. 5.23). Характеристика короткого замыкания (х.к.з.) совместно с характеристикой холостого хода (х.х.х.) используется для определения полного индуктивного сопротивления якоря по продольной оси . Пусть генератор работает на холостом ходу при токе возбуждения . Напряжение генератора . Если обмотку якоря закоротить, то в ней появится ток
,
где — насыщенное значение полного индуктивного сопротивления якоря по продольной оси.
Обычно определяют ненасыщенное значение . Для этого ЭДС холостого хода берут по спрямленной характеристике холостого хода (рис. 5.23)
.

Ток короткого замыкания при напряжении холостого хода, равном номинальному, выражают в относительных единицах и называют отношением короткого замыкания (ОКЗ),
.
ОКЗ связано с сопротивлением соотношением
.
ОКЗ так же, как и , определяет перегрузочную способность генератора (величину наибольшей нагрузки, которую способен нести генератор). Чем больше ОКЗ, тем больше эта нагрузка. Величина ОКЗ у турбогенераторов составляет , а у гидрогенераторов —

Внешние характеристики

Внешней характеристикой называется зависимость напряжения генератора от тока якоря при постоянных токе возбуждения, частоте вращения и угле нагрузки (, , ). Внешние характеристики показывают, как изменяется напряжение генератора при увеличении нагрузки с заданным , если ток возбуждения остается неизменным.
На рис. 5.24 представлены внешние характеристики генератора для разных видов нагрузки.
Различие во внешних характеристиках объясняется разным действием реакции якоря. При отстающем токе () существует значительная продольная размагничивающая реакция якоря (рис.5.13, а), поэтому с увеличением нагрузки напряжение генератора снижается. При чисто активной нагрузке () также имеет место продольная размагничивающая реакция якоря (так как ), но она выражена слабее и снижение напряжения происходит медленнее.
При опережающем токе () возникает намагничивающая реакция якоря (рис.5.13, б). Поэтому в рабочем диапазоне изменения тока нагрузки напряжение генератора выше, чем при холостом ходе.
Все характеристики сходятся в точке короткого замыкания (, ), не зависящей от характера нагрузки. С помощью внешней характеристики определяется изменение напряжения генератора при переходе от номинальной нагрузки к холостому ходу или обратно. Величина обычно составляет . Она тем больше, чем больше внутреннее сопротивление генератора.

Регулировочные характеристики

Регулировочной характеристикой генератора называется зависимость тока возбуждения от тока якоря при постоянных напряжении генератора, частоте вращения и угле нагрузки (, , ).
Регулировочная характеристика показывает, как нужно регулировать ток возбуждения генератора, чтобы при изменении нагрузки его напряжение оставалось неизменным. Опытное определение регулировочных характеристик происходит путем постепенного увеличения нагрузки генератора при неизменном коэффициенте мощности . При этом ток возбуждения регулируется таким образом, чтобы напряжение оставалось неизменным.
Семейство регулировочных характеристик для разного типа нагрузки представлено на рис. 5.25. При активно-индуктивной нагрузке () для компенсации размагничивающего действия реакции якоря необходимо увеличивать ток возбуждения, а при активно-емкостной нагрузке (), наоборот, чтобы поддерживать напряжение генератора на заданном уровне, необходимо ток возбуждения уменьшать, поскольку реакция якоря оказывает намагничивающее действие. При работе генератора на чисто емкостную нагрузку напряжение генератора может появиться даже при отсутствии тока возбуждения. Это явление называется самовозбуждением синхронного генератора.

Нагрузочные характеристики

Нагрузочной характеристикой называется зависимость напряжения генератора от тока возбуждения при постоянных токе якоря, частоте вращения и угле нагрузки (, , ). Существует большое семейство нагрузочных характеристик, охватывающее все многообразие нагрузок генератора, но практический интерес представляет лишь индукционная нагрузочная характеристика, которая снимается при и .

Если пренебречь активным сопротивлением обмотки якоря (), то рабочий процесс генератора в этом режиме можно описать системой уравнений

(5.14)
которой соответствует векторная диаграмма (рис. 5.26). Из векторной диаграммы следует, что комплексные уравнения (5.14) можно заменить алгебраическими
(5.15)
С помощью этих уравнений можно получить искомую нагрузочную характеристику , если заменить уравнения МДС на эквивалентные им уравнения токов
,
где — ток намагничивания; — ток якоря, приведенный к обмотке возбуждения и вместо характеристики воспользоваться характеристикой холостого хода .
Задавая ЭДС , находим из первого уравнения системы (5.15) напряжение генератора
,
а по характеристике определяем ток намагничивания . Ему соответствует ток возбуждения .

Найденные значения напряжения и тока определяют точку С (рис. 5.27) на искомой характеристике , соответствующую заданной ЭДС (точка А на х.х.х.). Опустим из точки А перпендикуляр на ось абсцисс и отложим на нем отрезок АВ, пропорциональный ЭДС рассеяния , тогда отрезок ВС будет определять приведенный ток якоря в масштабе тока возбуждения . Треугольник АВС получил название реактивного треугольника. Катеты этого треугольника пропорциональны току нагрузки . В рассматриваемом режиме ток , поэтому катеты остаются неизменными при различных значениях тока возбуждения. Отсюда следует, что при перемещении вершины А реактивного треугольника по х.х.х. вершина С будет определять точки нагрузочной характеристики (рис. 5.27). Начальная точка этой характеристики соответствует режиму короткого замыкания. Ее координаты известны: , , поэтому их можно использовать для определения приведенного тока якоря
.
Ток намагничивания в режиме короткого замыкания определяется по характеристике холостого хода при известной величине ЭДС
.
Описанный способ построения индукционной нагрузочной характеристики давал бы точное совпадение с опытной индукционной нагрузочной характеристикой, если бы х.х.х. точно отражала насыщение генератора при нагрузке. В действительности же из-за дополнительного подмагничивания стали потоками рассеяния магнитная характеристика генератора будет идти ниже х.х.х. (рис. 5.16) и, следовательно, опытная индукционная характеристика будет идти ниже расчетной.
Используя х.х.х. и опытную индукционную нагрузочную характеристику, можно определить сопротивление Потье . Для этого на горизонтальной прямой, соответствующей номинальному напряжению, отложим из точки отрезок , равный току возбуждения в режиме короткого замыкания (отрезок ), и проведем линию параллельно спрямленной в начале координат х.х.х. Опустив из точки перпендикуляр на линию , получим отрезок , пропорциональный .

Поэтому
,
где — масштаб кривых по оси ординат.
Если кривые построены в относительных единицах, то . Для гидрогенераторов величина сопротивления Потье , а для турбогенераторов .

3.10. Внешние, регулировочные и нагрузочные характеристики синхронного генератора

Зависимость напряжения от тока нагрузки прииназываютвнешними характеристиками генератора.

Рис. Внешние характеристики синхронного генератора при различных видах нагрузки: при одинаковом (слева); б – при одинаковом(справа).

При индуктивной нагрузке реакция якоря и падение напряжениявызывают уменьшение напряжения, поэтому внешняя характеристика имеет резко падающий характер, причем с уменьшениемпадение напряжения возрастает. При емкостной нагрузке указанные факторы повышают напряжение.

При активной нагрузке все характеристики пересекаются в одной точке, соответствующей значению тока трехфазного короткого замыкания.

В неявнополюсных синхронных генераторах относительная величина реакции якоря обычно больше, чем в явнополюсных, поэтому относительное падение напряжения при индуктивной нагрузке больше, чем повышение напряжения при емкостной нагрузке.

Регулировочные характеристики представляют собой зависимость тока возбуждения от тока нагрузкипри напряжении,и.

Рис. Регулировочные характеристики синхронного генератора.

Из анализа регулировочных характеристик следует, что для поддержания напряжения при росте активно-индуктивной нагрузки необходимо увеличение тока возбуждения.

Нагрузочные характеристики – зависимость при неизменных параметрах нагрузки,и.

Рис. Нагрузочные характеристики синхронного генератора.

Характеристика холостого хода – частный случай нагрузочной характеристикипри отсутствии нагрузки.

Наибольшее практическое значение имеет индукционная нагрузочная характеристика при и.

3.11. Потери и кпд синхронного генератора

Потери, возникающие в синхронной машине, можно разделить на основные и добавочные.

Основные потери появляются в результате проявления электромагнитных и механических процессов работы машины: электрические потери в обмотках якоря и возбуждения, магнитные потери в сердечнике статора и механические потери (на трение в подшипниках и щетках контактных колец и вентиляционные потери).

Читайте также  Тиристорная система возбуждения синхронного генератора

Добавочные потери возникают в результате проявления вторичных процессов электромагнитного характера: потоков рассеяния статора, высших гармоник МДС статора и ротора и наличие зубцов и пазов на статоре и роторе. Для уменьшения добавочных потерь обмотку статора выполняют с укорочением шага, проводники обмотки статора делят но высоте паза на ряд элементарных проводников и выполняют их транспозицию в активной или/и в лобовой части обмотки.

Коэффициент полезного действия синхронного генератора

, где– мощность приводного двигателя;– полезная (активная) мощность;– сумма всех потерь.

Полезная (активная) мощность, отдаваемая генератором:

, где– число фаз трехфазного генератора;и– фазное напряжение и ток;– коэффициент мощности нагрузки (и).

Часть мощности приводного двигателя тратится на покрытие механических потерь , магнитных потерь в стали статора, потерь на возбуждение(если возбудитель находится на одном валу с генератором).Электромагнитная мощность:

передается на статор электромагнитным путем.

, где– электрические потери в обмотке статора. Обычно ими пренебрегают и считают.

Электромагнитная мощность явнополюсной и неявнополюсной синхронной машины соответственно:

и.

Характеристики синхронного генератора (СГ).

К характеристикам синхронного генератора (СГ) относятся:

1. характеристика холостого хода (Х.Х.);

2. нагрузочные характеристики;

3. внешние характеристики;

4. регулировочные характеристики;

5. характеристика короткого замыкания (К.З.);

6. отношение короткого замыкания (К.З.).

Характеристика холостого хода.

Характеристика Х.Х. – есть зависимость ЭДС обмотки якоря синхронного генератора, неподключенного к нагрузке, от тока в его обмотке возбуждения.

Нелинейность характеристики Х.Х. обусловлена насыщением магнитной цепи синхронного генератора (СГ), при достижении тока в обмотке возбуждения If значений, близких к номинальному. Возврат нисходящей ветви к характеристике Х.Х. не в нуль, связан с остаточной намагниченностью.

Нагрузочные характеристики.

Нагрузочная характеристика представляет собой зависимость напряжения на выходе синхронного генератора (СГ) от тока в обмотке возбуждения при номинальной нагрузке Ia=Iн.

В случае активной, активно-индуктивной, индуктивной нагрузок нагрузочная характеристика проходит ниже кривой характеристики Х.Х., ввиду размагничивания реакции якоря. В случае активно- емкостной, емкостной нагрузок кривая нагрузочной характеристики проходит выше характеристики Х.Х. и линии номинального напряжения, ввиду намагничивания реакции якоря.

Внешние характеристики.

Внешняя характеристика – есть зависимость напряжения на выходе синхронного генератора (СГ) от величины тока нагрузки Ia, при If=const, f1=const, n=const и cos =const.

В случае индуктивного рода нагрузки напряжение с ее ростом снижается. В случае емкостной составляющей нагрузки напряжение с ее ростом увеличивается.

Регулировочные характеристики.

Регулировочная характеристика – есть зависимость тока в обмотке возбуждения синхронного генератора (СГ) от его тока нагрузки Ia, при поддержании постоянства выходного напряжения (U=const), f1=const,

n=const, cos =const.

Для поддержания постоянного напряжения, при возрастании индуктивной нагрузки, требуется увеличение тока в обмотке возбуждения If, а при возрастании емкостной нагрузки – уменьшение If.

Характеристика короткого замыкания.

Характеристика К.З. трехфазной цепи – есть зависимость тока К.З. от тока в обмотке возбуждения, при U=0, f1=const, n=const, cos =const.

Так как основной поток в воздушном зазоре при К.З. создает малую ЭДС ( ), то магнитная система синхронного генератора (СГ) при таком режиме является ненасыщенной. Поэтому характеристика К.З. носит строго прямолинейный характер.

Характеристики одно- и двух — фазного К.З. носят также прямолинейный характер, причем, чем меньше фаз замкнуто накоротко, тем выше проходят характеристики К.З., ввиду размагничивающего воздействия К.З. фаз на суммарное.

Отношение короткого замыкания.

Важное практическое значение для оценки свойств синхронной машины (СМ) имеет отношение Ifo/Ifк, соответствующее отношению величин ЭДС Х.Х. (Ео), определяемое по характеристике Х.Х., к току в обмотке возбуждения при К.З., соответствующего номинальному току, определяемого по прямой трехфазного К.З.. Это отношение называется отношением короткого замыкания (К.З.), и характеризует главным образом влияние реакции якоря на систему возбуждения синхронной машины (СМ).

Обозначим ЭДС, получаемое при If=Ifo по продолжению прямолинейной части характеристики Х.Х., через Еn. Тогда отношение К.З. равно:

Xd*-относительно индуктивное сопротивление якоря по продольной оси.

Отсюда отношение К.З. имеет вид:

Для синхронных машин (СМ), работающих без насыщения магнитной системы, отношениеIfo/Ifк =1, и тогда отношение К.З.=1/Xd*

Таким образом, для ненасыщенных синхронных машин (СМ), отношение К.З. равно обратной величине относительного значения индуктивности сопротивления по продольной оси. Для синхронных машин (СМ) неявнополюсного типа отношение К.З. = (0.5÷0.7), для явнополюсных отношение К.З. = (1÷1.5).

Синхронные машины (СМ) с малым отношением К.З. имеют гораздо менее жесткие характеристики при колебаниях нагрузки, а также являются менее устойчивыми при параллельной работе.

Большие величины воздушного зазора, характерные для явнополюсных синхронных машин (СМ), приводят к увеличению отношения К.З., обуславливают жесткие характеристики и повышают устойчивость работы генератора параллельно с другим генератором, а также делают работу генератора более устойчивой при колебаниях нагрузки. С другой стороны увеличение воздушного зазора приводит к ухудшению использования активных и конструктивных материалов синхронных машин (СМ) и увеличению веса и габаритов синхронных машин (СМ).

Синхронный генератор. Устройство генератора и принцип действия

Синхронный генератор – машина (механизм) переменного тока, которая преобразовывает определенный тип энергии в электроэнергию. К таким устройствам относят электростатические машины, гальванические элементы, солнечные батареи, термобатареи и т. п. Использование каждого вида из перечисленных приборов определяется их техническими характеристиками.

синхронный генератор переменного тока

Область применения

Применяют синхронные агрегаты как источники электроэнергии переменного тока: используют на мощных тепло-, гидро- и атомных станциях, на передвижных электрических станциях, транспортных системах (машинах, самолетах, тепловозах). Синхронный агрегат способен работать автономно – генератором, который питает подключаемую к ней какую-либо нагрузку, либо параллельно с сетью — в нее подключены иные генераторы.

устройство синхронного генератора

Синхронный агрегат может включать устройства в тех местах, где нет центрального питания электрических сетей. Данные приборы можно применять в фермерских хозяйствах, которые расположены далеко от населенных пунктов.

Описание прибора

Устройство синхронного генератора обусловлено наличием таких элементов, как:

  • Ротор, или индуктор (подвижный, вращающийся), в который входит обмотка возбуждения.
  • Якорь, или статор (недвижимый), в который включается обмотка.
  • Обмотка агрегата.
  • Переключатель катушки статора.
  • Выпрямитель.
  • Несколько кабелей.
  • Структура электрического компаундирования.
  • Сварочный аппарат.
  • Катушка ротора.
  • Регулируемый поставщик постоянного электротока.

Синхронный генератор работает в качестве генераторов и моторов. Он может переходить от графика работы генератора к графику двигателя – это зависит от действия вращающей либо тормозящей силы прибора. В графике генератора в него входит механическая, а исходит электроэнергия. В графике двигателя в него входит электрическая, а исходит механическая энергия.

устройство генератора

Прибор включается в цепь переменного тока разного типа нелинейных сопротивлений. Синхронные агрегаты являются генераторами переменного тока на электростанциях, а синхронные моторы используются тогда, когда необходим двигатель, что работает с постоянной крутящейся частотой.

Принцип работы агрегата

Работа синхронного генератора осуществляется по принципу электромагнитной индукции. Во время холостого движения якорная (статорная) катушка разомкнута, поэтому магнитное поле агрегата формируется одной обмоткой ротора. Когда ротор крутится от проводного мотора, у него присутствует постоянная частота, роторное магнитное поле перемещается через проводники обмоток фаз статора и осуществляет наводку повторяющихся переменных токов – электродвижущую силу (ЭДС). ЭДС носит синусоидальный, несинусоидальный либо пульсирующий характер.

трехфазный синхронный генератор

Обмотка возбуждения предназначается для создания в генераторе первоначального магнитного поля, чтобы навести в катушку якоря электрическую движущую силу. В случае если якорь синхронного генератора приводят в движение путем вращения с определенной скоростью, затем возбуждают источником постоянных токов, то поток возбуждения переходит через проводники катушек статора, и в фазах катушки индуцируются переменные ЭДС.

Читайте также  Бензиновый генератор gen 500

Трехфазное устройство

Трехфазный синхронный генератор – устройство, имеющее трехфазную структуру переменного тока, которая имеет огромное практическое распространение. Крутящийся электромагнит способен образовывать магнитный поток (переменный), который перемещается через три фазы обмотки имеющегося статора. И результатом этого является то, что в фазах происходит переменная ЭДС однотипной частоты, сдвиг фаз осуществляется под углом, равным одной третьей периода вращения магнитных полей.

Трехфазный синхронный генератор оборудован так, что на его валу якорь является электромагнитом и питается от генератора. Когда вал вращается, к примеру, от турбины, генератор поставляет электроток, в то время как обмотка ротора питается поставляемым током. От этого якорь становится электрическим магнитом и, осуществляя обороты с тем же валом, доставляет вращающееся электромагнитное поле.

синхронный генератор

Благодаря синхронным трехфазным гидро- и турбогенераторам производится большая часть электроэнергии. Синхронные агрегаты применяются и в качестве электромоторов в таких устройствах, у которых мощность превышает 50 кВт. Во время работы синхронного агрегата в графике двигателя сам ротор соединяют с источником постоянных токов, статор же подключают к трехфазному кабелю.

Структуры возбуждения

Любые турбо-, гидро-, дизельные генераторы, синхронные компенсаторы, моторы, производимые на данный момент, оснащаются новейшими полупроводниковыми структурами, такими как возбуждение синхронных генераторов. В данных структурах применяется метод выпрямления трехфазных переменных токов возбудителей высокой или промышленной частоты либо напряжения возбуждаемого агрегата.

Устройство генератора таково, что структуры возбуждения могут обеспечить такие параметры работы агрегата, как:

  • Первая стадия возбуждения, то есть начальная.
  • Работа вхолостую.
  • Подключение к сети способом точной синхронизации либо самосинхронизации.
  • Работа в энергетической структуре с имеющимися нагрузками или перегрузками.
  • Возбуждение синхронных приборов может быть форсировано по таким критериям, как напряжение и ток, имеющими заданную кратность.
  • Электроторможение аппарата.

Конструкция генератора

На данный момент производится много видов индукционных приборов, но устройство генератора создано так, что в них присутствуют одинаковые части:

  • Электромагнит либо постоянный магнит, что производит магнитное поле.
  • Обмотка с индуцирующейся переменной ЭДС.

Чтобы получить наибольший магнитный поток, во всех генераторах используют специальную магнитную структуру, которая состоит из двух стальных сердечников.

работа синхронного генератора

Обмотки, что создают магнитное поле, установлены в пазах одного из сердечников, а обмотки, индуцируемые ЭДС – в пазах другого. Один из сердечников — внутренний — взаимодействует со своей обмоткой и крутится вокруг горизонтального либо вертикального стержня. Такой стержень называется ротором. Недвижимый сердечник с обмоткой называется якорем (статором).

Характеристики прибора

Для оценки функции синхронных генераторов применяются те же самые характеристики, какие применяются в генераторах постоянного тока. Только некоторые условия различаются и дополняются.

Главные характеристики синхронного генератора такие:

  • Холостой ход – это зависимость ЭДС прибора от токов возбуждения, одновременно является показателем намагничивания магнитных цепей машины.
  • Внешняя характеристика – это зависимость напряжения устройства от токов нагрузки. Напряжение агрегата меняется по-разному в зависимости от увеличения нагрузки при различных ее видах. Причины, что вызывают такие изменения, следующие:
  1. Падение значения напряжения на индуктивном и активном сопротивлении обмоток устройства. Увеличивается по мере того, как увеличивается нагрузка прибора, то есть его ток.
  2. Изменение ЭДС агрегата. Происходит в зависимости от реакции статора. При активных нагрузках уменьшение напряжения будет вызвано падением напряжения во всех обмотках, потому что реакция статора влечет за собой увеличение ЭДС генератора. При активно-емкостных видах нагрузки эффект намагничивания вызывает увеличение текущего значения напряжения по сравнению с номинальным показателем.
  • Регулировочные характеристики синхронного генератора – это зависимость токов возбуждения от токов нагрузки. В процессе работы синхронных агрегатов нужно поддерживать постоянное напряжение на их зажимах независимо от характера и величины нагрузок. Этого несложно достигнуть, если регулировать ЭДС генератора. Это можно сделать путем изменения токов воз­буждения автоматически в зависимости от изменений нагрузок, то есть при активно-емкостной нагрузке нужно уменьшать ток возбуждения для поддержания постоянного напряжения, а при активно-индуктивной и активной — увеличивать.

возбуждение синхронных генераторов

Мощность синхронного генератора определяется такими значениями:

  • Соответствующим напряжением в электросети.
  • Своей ЭДС.
  • Углом измерения.

Прибор переменного тока

Синхронный генератор переменного тока – это электромашина, что преобразует механическую вращательную энергию в электрическую энергию переменных токов. Мощные генераторы таких токов устанавливают:

  • гидрогенератор турбогенератор – на электростанциях;
  • приборы переменного тока сравнительно небольшой мощности — в системах автономного энергоснабжения (газотурбинная электростанция, дизельная электростанция) и в частотных преобразователях (двигатель-генератор).

В настоящее время выпускается множество типов таких приборов, но все они имеют общее устройство главных элементов:

  • якорь (статор) – неподвижный;
  • крутящийся вокруг оси ротор.

В промышленных генераторах больших размеров вращается электромагнит, являющийся ротором. Одновременно с этим обмотки с наводящимися ЭДС, уложенные в пазы статора, остаются неподвижными.

В таких устройствах, как маломощный синхронный генератор, магнитное поле создается вращающимся постоянным магнитом.

Виды синхронных агрегатов

Существуют следующие виды синхронных генераторов:

  1. Гидро – в нем ротор имеет отличие за счет присутствия явно выраженных полюсов, применяется при производстве электроэнергии, осуществляет работу на малых оборотах.
  2. Турбо – имеет отличия неявнополюсным строением генератора, производится от турбин разного вида, скорость оборотов довольно высокая, достигает порядка 6000 оборотов в минуту.
  3. Компенсатор синхронный – данный агрегат поставляет реактивную мощность, применяется для повышения качества электроэнергии, чтобы стабилизировать напряжение.
  4. Асинхронный агрегат двойного питания – устройство генератора такого типа заключается в том, что в нем подключается как роторная, так и статорная обмотки от поставщика токов с различной частотой. Создается асинхронный график работы. Также он отличается устойчивостью графика работы и тем, что преобразовывает разные токи фаз и используется для решения задач с узкой специализацией.
  5. Двухполюсный ударный агрегат – работает в графике короткого замыкания, воздействует кратковременно, в миллисекундах. Также испытывает аппараты с высоким напряжением.

Разновидности агрегатов

Синхронный генератор (мотор) подразделяется на несколько моделей, которые предназначены для разнообразных целей:

  • Шаговые (импульсные) – применяются для приводов механизмов с циклом работы старт-стоп или устройств непрерывного движения с импульсным управляющим сигналом (счетчиков, лентопротяжных устройств, приводов станков с ЧПУ и др.).
  • Безредукторные – для применения в автономных системах.
  • Бесконтактные – применяются для работы в качестве электростанций на судах морского и речного флота.
  • Гистерезисные – используются для счетчиков времени, в инерционных электроприводах, в системах автоматического управления;
  • Индукторные моторы – для снабжения электроустановок.

Разделение по виду ротора

По роду прибора ротора устройство генератора подразделяется на:

  • Явнополюсное – с выступающими либо с явно выраженными полюсами. Данные роторы применяются в генераторах с тихим ходом, у которых скорость вращения не превышает 1000 оборотов в минуту.
  • Неявнополюсное – это ротор с формами цилиндра, у которого нет выступающих полюсов. Данные якоря бывают двухполюсными и четырехполюсными.

В первом случае ротор состоит из крестовины, на которой закрепляют сердечники полюсов или обмотки возбуждения. Во-втором – быстроходные агрегаты с числом оборотов 1500 либо 3000. Ротор сделан в виде цилиндра из стали довольно высокого качества с пазами, в них устанавливают обмотку возбуждения, состоящую из отдельных обмоток различной ширины.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: