Тип тока в дизельных генераторах

Как работает дизельный генератор?

Перед тем как выбирать для личного пользования дизельный генератор, необходимо хоть немного ознакомиться с тем, как он устроен и как происходит его работа.

Перед тем как выбирать для личного пользования дизельный генератор, необходимо хоть немного ознакомиться с тем, как он устроен и как происходит его работа.

Перед тем как выбирать для личного пользования дизельный генератор, необходимо хоть немного ознакомиться с тем, как он устроен и как происходит его работа. Вам будет легче оценивать его состояния, если Вы будете иметь представление о его устройстве. Сегодня мы будем рассказывать о том: «как работает дизельный генератор?»

Электрический генератор (дизельный) — это машина, которая используется для выработки электроэнергии, которая может использоваться для любого количества применений, от небольших электроинструментов до крупных промышленных применений. Это популярная альтернатива использованию энергии сети, вырабатываемой ветряными турбинами или ископаемым топливом, и паровой турбиной высокого напряжения на электростанции.

Есть много типов генераторов, от бензиновых генераторов, портативных генераторов и инверторных генераторов. Для домашних генераторов, которые могут работать на природном газе, резервные генераторы для отключения электроэнергии и гораздо большие промышленные генераторы. Однако в этой статье мы будем конкретно говорить о дизельных генераторах, также известных как генераторные установки.

Здесь, в Rental Power, наши высококвалифицированные отраслевые эксперты знают все, что нужно знать о дизельных генераторах. Итак, этот блог будет посвящен объяснению того, как работает генератор энергии, и каковы основные рабочие компоненты, из которых они состоят.

Как вырабатывается электричество?

как вырабатывается электричество

Простое объяснение этому заключается в том, что дизельные генераторы работают как электрические машины, которые преобразуют один источник энергии в другой вид энергии. В этом случае генератор энергии работает, беря механическую энергию и преобразовывая ее в электрическую энергию.

Вопреки тому, что многие могут предположить, на самом деле нет никакого реального "создания" электричества. Один электрический генератор или несколько синхронных генераторов не могут заставить электричество появляться из воздуха. Все это связано с теорией электромагнитной индукции Майкла Фарадея, о которой мы поговорим подробнее, пройдя по разным частям генератора.

Основные части дизельного генератора

Каждый дизель-генератор состоит как минимум из девяти различных частей, но самые важные части представлены ниже:

  • Дизель генератор переменного тока
  • Топливная система
  • Регулятор напряжения
  • Система охлаждения и выхлопная система
  • Система смазки
  • Зарядное устройство
  • Панель управления
  • Основная сборочная рама

Устройство дизельного генератора

Чтобы лучше понять, как работает генератор энергии для преобразования механической энергии в электрическую, мы рассмотрим роль всех этих компонентов, начиная с дизельного двигателя.

Дизельный двигатель

Это просто базовый дизельный двигатель, он ничем не отличается от тех, что встречаются в автомобилях, фургонах, грузовиках или других больших транспортных средствах. Это источник механической энергии, и размер двигателя имеет значение. Если вы хотите увеличить мощность генератора, вам нужен двигатель побольше. Чем больше двигатель, тем большую электрическую мощность вы можете произвести.

Генератор переменного тока

По сути, это компонент, который отвечает за выработку выходной мощности. Здесь мы видим, как в игру вступает понятие электромагнитной индукции.

Генератор переменного тока состоит из множества сложных компонентов, но одним из наиболее важных аспектов является ротор. Это вал, который вращается под действием механической энергии, подаваемой двигателем, вокруг него закреплено несколько постоянных магнитов. При этом это создает магнитное поле.

Это создаваемое магнитное поле постоянно вращается вокруг другой важной части генератора: статора. Проще говоря, это разновидность различных электрических проводников, которые плотно намотаны на железный сердечник. Здесь вещи начинают становиться немного более научными. Согласно принципу электромагнитной индукции, если электрический проводник остается неподвижным и магнитное поле движется вокруг него, то индуцируется электрический ток.

Таким образом, генератор использует механическую энергию, создаваемую дизельным двигателем, который приводит в движение ротор, создавая магнитное поле, которое движется вокруг статора, который, в свою очередь, генерирует переменный ток.

Топливная система

Топливная система в основном состоит из топливного бака с трубкой, соединяющей его с двигателем. Здесь дизельное топливо может подаваться непосредственно в двигатель, что затем запускает весь процесс, описанный выше. Размер топливного бака в конечном счете определяет, как долго генератор может оставаться активным.

Наш ассортимент бесшумных генераторов в кожухе обычно предоставляется с топливными баками, входящими в стандартную комплектацию электрогенератора. Если требуется большая вместимость топлива, мы можем спроектировать и изготовить сделанный на заказ расширенный базовый топливный бак, или агрегат можно прикрепить к дополнительному отдельно стоящему наливному топливному баку.

Для более крупных проектов генераторов энергии, которые требуют установки генератора в акустическом корпусе, отдельные топливные системы обычно устанавливаются или располагаются либо внутри корпуса, под корпусом, либо иногда даже в обоих.

топливаня система генератора

Регулятор напряжения

Здесь у нас самая сложная часть электрического генератора. Регулятор напряжения служит одной довольно очевидной цели: регулировать выходное напряжение.

Проще говоря, это гарантирует, что генератор производит электричество при хорошем постоянном напряжении. Без этого вы бы увидели огромные колебания в зависимости от того, насколько быстро работает двигатель. Излишне говорить, что все используемое нами электрооборудование не сможет справиться с таким нестабильным источником питания. Итак, эта часть творит чудеса, чтобы все было гладко и ровно.

Система охлаждения и выхлопная система

Оба эти компонента играют очень важную роль, и хорошая новость заключается в том, что их легко понять! Система охлаждения помогает предотвратить перегрев генератора. В генераторе циркулирует охлаждающая жидкость, которая нейтрализует всю дополнительную тепловую энергию, производимую двигателем и генератором. Затем охлаждающая жидкость забирает все это тепло через теплообменник и избавляется от него снаружи генератора.

Выхлопная система работает так же, как выхлопная система вашего автомобиля. Он забирает любые газы, образующиеся в дизельном двигателе, пропускает их через систему трубопроводов и выпускает их из генераторной установки.

выхлопная система дизельного генератора

Система смазки

Этот компонент крепится к двигателю и прокачивает через него масло, чтобы все детали работали плавно и не притирались друг к другу. Без этого двигатель сломается.

система смазки генератора

Зарядное устройство

Все дизельные двигатели нуждаются в крошечном электрическом двигателе, чтобы привести его в действие. Этот маленький мотор требует батареи, которая должна быть заряжена. Зарядное устройство сохраняет заряд батареи и заряжается от внешнего источника самого генератора.

аккумулятор в генераторе

Панель управления

Это просто, где генератор контролируется и работает. На генераторе с электрическим запуском (или с автоматическим запуском) вы найдете целый ряд элементов управления, которые позволяют вам делать разные вещи или проверять определенные цифры. Это может быть что угодно, от кнопки запуска и переключателя частоты, до индикатора уровня топлива в двигателе, индикатора температуры охлаждающей жидкости и многого другого.

панель управления генератора

Основная сборочная рама

Каждый генератор должен быть защищен от окружающей среды, и это основной каркас сборки. Здесь находится генератор и там, где собраны все разные части. Он держит все вместе, и это может быть открытый дизайн — или закрытый (навес) для дополнительной защиты и ослабления звука. Наружные генераторы, как правило, размещаются в защитной раме, защищающей от атмосферных воздействий для предотвращения повреждений.

генератор в кожухе

Итог

Итак, вот как работает электрический генератор. Дизельный двигатель снабжает генератор механической энергией, которая затем преобразуется в электрический ток благодаря магнитному полю, создающему электромагнитную индукцию. Но теперь вы точно знаете, как это происходит, вместе со всеми различными частями внутри генератора энергии.

Дизель генератор — устройство и принцип действия

Приобретая для той или иной цели дизельный генератор, важно понимать принцип его работы, ибо не понимая с чем конкретно имеешь дело, можно случайно упустить из виду признаки неисправностей, да и просто нарушить правила эксплуатации сего агрегата.

Самый обычный дизельный генератор (какой подходит для дома или небольшого предприятия в качестве источника резервного электроснабжения), состоит из нескольких основных блоков, установленных внутри каркаса, часто защищенного шумопоглощающим кожухом: топливный бак, дизельный двигатель, ручной стартер, электронный блок автоматического управления и стабилизации напряжения, альтернатор (непосредственно генератор переменного тока), аккумулятор с зарядным устройством. Кроме этого в пределах рамы дизельного генератора реализованы системы смазки и охлаждения двигателя, а также система выхлопа отработанных газов.

Дизель генератор - устройство и принцип действия

Принцип производства электричества в генераторе данного типа основан на использовании дизельного двигателя в сочетании с генератором переменного тока. Дизельный верхнеклапанный двигатель внутреннего сгорания позволяет обеспечить надежное механическое вращение ротора генератора без излишнего шума, габаритных нагромождений и избыточного выхлопа, в сравнении с другими решениями на жидком топливе.

Энергия сжигаемого топлива превращается здесь сначала в энергию расширяющегося газа, который давит на поршни, а те вращают коленвал. Так химическая энергия топлива превращается в механическую энергию вращения коленвала. Коленвал, в свою очередь, передает вращение ротору генератора.

Дизель генератор Atlas Copco QEP R6.5

Генератор переменного тока (или альтернатор) может быть синхронным или асинхронным, внутри его корпуса находится вращающийся ротор (с щетками или без щеток) и неподвижный статор с обмоткой. Магнитное поле вращающегося ротора пересекает обмотку статора, наводя в ней ЭДС, создавая таким образом электрическое напряжение и ток с нужными потребителю параметрами.

Считается, что синхронный альтернатор более подходит для питания мощных нагрузок, а для чувствительных к перепадам напряжения потребителей, таких как холодильники, более подойдет асинхронный альтернатор с лучшей способностью к поддержанию постоянной величины выходного напряжения.

Дизельный генератор

Итак, дизельный двигатель внутреннего сгорания передает вращение ротору генератора переменного тока. А для нормальной работы ДВС, он оснащен аккумулятором с зарядным устройством, ручным стартером, системой смазки с трубопроводом и фильтром, системой охлаждения, а также системой подачи топлива с насосом, трубопроводом и топливниками. Большие промышленные модели дизельных генераторов имеют дополнительно систему поддержки термического режима двигателя на приемлемом уровне, а также систему распределения электричества.

Система охлаждения в современном дизельном генераторе может быть жидкостной или воздушной. Простейшие бытовые генераторы традиционно имеют воздушное охлаждение, тогда как промышленные модели оснащаются жидкостным. Есть системы подачи воздуха с турбонаддувом и без турбонаддува.

Время работы дизельного генератора ограничивается запасом горючего в топливном баке и зависит от мощности, отбираемой от генератора. Обычно расход топлива для дизельных генераторов разных моделей лежит в диапазоне от 6 до 50 литров за час, в зависимости опять же от отбираемой мощности и номинала конкретного агрегата.

Диапазон выходных напряжений, характерный для мобильного дизельного генератора — от 200 до 400 вольт, причем выходное напряжение может быть как однофазным, так и трехфазным. Более эффективные трехфазные версии имеют номинал 380 вольт, однофазные — 220 вольт. Мобильные дизельные генераторы выпускаются на номинальные мощности от 1,5 до 20 кВт. Промышленные — от 20 до 100 и более кВт.

Устройство и принцип работы дизельного генератора

Чтобы преобразовать механическую энергию (двигателя внутреннего сгорания, ветрового двигателя, турбины) в электрическую энергию (постоянного или переменного тока), необходим генератор. Основные части генератора – неподвижный якорь (статор) и приводимый во вращение первичным двигателем с высоким постоянством числа оборотов индуктор (ротор) с питаемой постоянным током обмоткой возбуждения.

Ротор электромашины переменного тока может вращаться с частотой магнитного поля или отставать от него (вращаться с меньшей скоростью). В первом случае машина относится к синхронным, во втором к асинхронным. Синхронная электрическая машина, работающая в генераторном режиме, называется синхронным генератором. Синхронный генератор обратим, т.е. при подключении якорной обмотки к трехфазной электросети он работает как электродвигатель.
Принцип работы синхронного генератора

При вращении ротора синхронного генератора (СГ) линии его магнитного поля пересекают обмотку статора. Магнитное поле ротора создается независимым возбудителем, в качестве которого может служить аккумулятор или дополнительный генератор постоянного тока с напряжением обычно не выше 150 В, а также ртутные, полупроводниковые (селеновые или германиевые) или механические выпрямители.

Возможно и обратное решение (применяемое обычно в малогабаритных передвижных установках переменного тока) – вращение ротора в неподвижном магнитном поле, при этом вырабатываемый в обмотках ротора переменный ток необходимо снимать с ротора через коллектор. Вырабатываемая СГ электродвижущая сила (ЭДС) пропорциональна магнитной индукции, длине паза статора, числу витков в обмотке статора, внутреннему диаметру статора и частоте вращения магнитного поля. Изменение ЭДС синхронного генератора возможно путем регулирования тока в обмотке возбудителя реостатом или системой автоматического регулирования.

Частота вращения магнитного поля равна скорости вращения ротора, а частота вырабатываемого переменного напряжения пропорциональна частоте вращения магнитного поля и количеству пар полюсов статора. В качестве примера, при заданной частоте СГ 50 Гц при числе пар полюсов 1 ротор должен вращаться со скоростью 3000 об/мин, а при числе пар 2 – со скоростью 1500 об/мин и т.д.

Для поддержания постоянства частоты вырабатываемого СГ переменного напряжения скорость вращения первичного двигателя поддерживается постоянной посредством автоматического регулятора скорости.

Обычно от СГ требуется выработка напряжения порядка 15-40 кВ, снять такое напряжение с вращающегося коллектора сложно, и обмотки якоря, с которого снимается вырабатываемая электрическая энергия, выгодно сделать неподвижными. Мощность же возбуждения СГ обычно составляет 1-3% и не превышает 5% мощности СГ; подать эту мощность на вращающийся ротор не составляет проблемы.

При мощности СГ до нескольких киловатт магнитное поле ротора может обеспечиваться постоянными магнитами (самыми современными, неодимовыми), что позволяет обойтись без коллектора и токосъемника. При этом, ввиду невозможности регулирования магнитного потока ротора, выходное напряжение СГ неизменно и не поддается регулированию, либо же с регулированием возникают сложности. Мощность современного синхронного генератора достигает нескольких Гвт и выше.

Виды синхронных генераторов

Генераторы разделяются по способу возбуждения. Самый простой способ, не требующий дополнительного источника питания для возбуждения статора – это использование самовозбуждения за счет остаточного намагничивания сердечника ротора даже при отсутствии в обмотках ротора тока возбуждения. При вращении ротора слабый остаточный магнитный поток ротора вызывает образование в обмотках ротора небольшой ЭДС, которая отбирается понижающим трансформатором, выпрямляется и через коллектор подается в обмотку возбуждения, что увеличивает магнитный поток, ЭДС генератора и дальнейшее развитие процесса самовозбуждения, вплоть до выхода на нормальный режим работы. Подобная схема с самовозбуждением успешно применяется в автономных установках наземного, водного и воздушного транспорта.

Если применяется тиристорное устройство регулирования тока возбуждения, появляется возможность автоматического регулирования выходного напряжения СГ (поддержания его постоянства или изменения по определенному закону в зависимости от величины и характера нагрузки). Возможно также возбуждение ротора от дополнительного генератора (подвозбудителя), имеющего общий вал с основным генератором или соединенного с валом СГ посредством полумуфты.

Устройство синхронного генератора

Статор СГ по устройству схож с устройством статора асинхронного двигателя. Сердечник статора, в пазах которого размещается обмотка, собран из спрессованных в виде пакета пластин электротехнической стали толщиной 1-2 мм, разделенных изолирующей пленкой лака толщиной 0,08-0,1 мм.

Синхронный генератор может вырабатывать переменный ток однофазный или, чаще всего, трехфазный. К обмотке статора подключается нагрузка.

Конструктивно полюсы статора могут быть выступающими (как в тихоходных СГ со скоростью вращения не выше 1000 об/мин, вращаемых гидротурбинами), либо же не выражаться явно (как в скоростных машинах).

Синхронный генератор обратим – он может не только вырабатывать переменный ток (режим генератора), но и совершать механическую работу (режим двигателя).

Для охлаждения ротора в конструкции СГ предусмотрены крыльчатки на общем с ротором валу. Прежде чем поступить в СГ для охлаждения обмоток, воздух пропускается через фильтр, если же система охлаждения замкнута, он дополнительно охлаждается в теплообменнике. В качестве охлаждающего агента, помимо воздуха, применяется и водород ввиду своей легкости.

Концы обмоток СГ выводятся на контактную колодку, что позволяет соединить обмотки трехфазного СГ по схеме звезды или треугольника.

При необходимости получения синусоидального напряжения на выходе к форме явно выраженных полюсных наконечников предъявляются определенные требования, либо необходимо (при неявно выраженных полюсах) расположить витки роторной обмотки по особому закону.

Режимы работы синхронного генератора

Синхронный генератор может работать в режиме холостого хода, при отсутствии токов в обмотке якоря, и тогда вырабатываемое напряжение задается лишь током возбуждения.

При подключении к СГ потребителя через обмотку якоря начинают протекать токи, и создаваемое ими магнитное поле складывается с полем ротора. Ток в якорной обмотке при чисто активной нагрузке (нагревательные элементы, лампочки накаливания) совпадает по фазе с ЭДС, при индуктивной (асинхронные электродвигатели, дроссели, трансформаторы) отстает, а при емкостной (батареи конденсаторов, корректоры коэффициента мощности, высоковольтные ЛЭП) опережает. При активной нагрузке создаваемый в статоре дополнительный магнитный поток перпендикулярен потоку ротора, и ЭДС генератора, определяемая суммарным потоком, возрастает.

Реактивная нагрузка ведет к отклонению направлений потоков от перпендикулярности, вследствие несовпадения фаз тока якорной обмотки и ЭДС, и при емкостной нагрузке ЭДС генератора увеличивается еще выше, поскольку направление потоков начинает совпадать (вызывается продольно-намагничивающая реакция), а при индуктивной нагрузке к снижению ЭДС вследствие встречного направления потоков (вызывается продольно-размагничивающая реакция). Наиболее часто встречается смешанная активно-индуктивная нагрузка.

Чтобы устранить воздействие реакции якоря на ЭДС генератора, предусматривается регулирование возбуждения ротора с целью поддержания ЭДС на должном уровне с исключением ее зависимости от мощности и вида нагрузки. Также, для устранения колебаний при резкой смене режима работы СГ, помимо основной обмотки возбудителя, наматывается еще и демпферная (успокаивающая) катушка, особо полезная при совместной работе нескольких СГ на общую сеть. Поскольку нагрузка СГ не остается постоянной и время от времени меняется, существует необходимость постоянного регулирования тока возбуждения, что осуществляется автоматическими системами регулирования.

При нормальной работе СГ допустимы некоторые отклонения коэффициентов мощности нагрузки, напряжения и частоты в пределах нескольких процентов от номинальных значений. При нарушениях в линии нагрузки (коротких замыканиях, непостоянстве отбираемой мощности, неравномерном распределении нагрузки между фазами), возникает асимметрия выходного напряжения СГ, форма напряжения искажается и отклоняется от синусоидальной, что может приводить к перегреву обмоток и элементов конструкции генератора. Также, к искажениям формы ЭДС генератора ведет нелинейность нагрузки (подключенные к сети выпрямители, инверторы).

При работе СГ важно следить за расходом охлаждающей воды, автоматика должна предупреждать персонал при снижении расхода путем включения сигнализации, и при резком падении расхода приступить к разгрузке генератора с последующим отключением в течение нескольких минут.

Работа нескольких синхронных генераторов на общую сеть

Параллельная работа нескольких СГ необходима для полного использования их мощности, позволяет создавать мощные источники питания, а также периодически выводить на профилактику или в ремонт один из генераторов.

При параллельной работе нескольких СГ требуется строгое постоянство вырабатываемой каждым из них частоты, с высоким поддержанием постоянства скорости их вращения.

При включении в сеть еще одного СГ требуется равенство его напряжения напряжению сети с постоянством частоты, фазы и чередования фаз. Лишь при совпадении этих условий при включении СГ в сеть не будет толчков тока и опасных для обмоток уравнительных токов.

Синхронизация осуществляется посредством специальных устройств – синхроскопов, наиболее простыми из которых является ламповые, позволяющие по характеру свечения ламп синхроскопа определить с достаточной для практики точностью момент совпадения напряжения подключаемого генератора и сети по частоте, фазе и порядку чередования фаз.

Разновидности дизель-генераторов постоянного тока

Дизельная электростанция представляет собой стационарное или портативное устройство, действие которого направлено на выработку электроэнергии.

Дизель-генератор постоянного тока функционирует на дизельном топливе, о быстрой окупаемости говорить нет смысла, ведь предназначение ДГУ — обеспечение резервным питанием объектов в случаях отключения электроэнергии.

обзор дизель-генераторов постоянного тока

Два примера дизель-генератора постоянного тока

Таким образом, ДГУ необходимо при периодическом или постоянном возникновении перебоев с электроэнергией, но также генераторы применяются на удаленных объектах, где электрификация невозможна, например, нефтянные и газовые месторождения, турбазы, домики лесников, научные станции, строящиеся объекты, поезда, морские суда и т.д.

Стоимость дизельных генераторов зависит от производителя, модели и вырабатываемой мощности. Дизель-генераторы постоянного тока — удобный, безопасный и экономичный способ получения электроэнергии.

Виды и отличия

На рынке присутствует много компаний производителей дизель-генераторов. Основные отличия заключаются в габаритах, типе применяемого двигателя, производительности и мощности.

обзор дизель-генераторов постоянного тока

Еще несколько моделей

Перед покупкой ДГУ следует внимательно ознакомиться с техническими характеристиками, условиями эксплуатации и гарантийных обязательств производителя.

Существуют комбинированные модели, в которых можно менять тип используемого топлива после установки фильтров. Действие устройства основано на трансформации механической энергии в электрическую.

При выборе дизель-генератора обращают внимание на:

  • частота вращения;
  • мощность;
  • номинальный ток;
  • номинальное напряжение (от нескольких кВт до 10 МВт).

Одним из важных критериев считается способ получения электромагнитного поля для синтеза электроэнергии, по данному признаку различают синхронные и асинхронные генераторы. Различают сферу применения и функциональные возможности.

обзор дизель-генераторов постоянного тока

Несколько видов переносных дизель-генераторов постоянного тока

При оценке функциональности важную роль играют следующие факторы:

  • характеристика холостого хода;
  • регулировочная характеристика;
  • внешняя характеристика.

Синхронные

Генераторы данного типа отличаются высокой конструктивной сложностью и меньшей точностью. Они идеально подходят для подачи резервного питания и функционирования оборудования с реактивной нагрузкой.

принципиальная схема и примеры синхронных дизель-генераторов на 30 кВт и 40 кВт (50кВА)

Схема устройства и примеры синхронных дизель-генераторов на 30 кВт, стоимостью примерно 315 000 руб (US $5,289) и 40 кВт (50кВА), стоимостью примерно 330 000 руб

Устройства данного типа отличаются устойчивостью к пусковым токам, которые в несколько раз превышают номинальные значения. Такие параметры характерны для насосов, компрессоров, электродвигателей и другого оборудования.

Основное преимущество таких моделей заключается в стабильности выходного напряжения, основным недостатком считается перегрузка по току, при завышении нагрузки возрастает ток в роторной обмотке. Особенностью синхронного генератора считается наличие щеточного узла с ограниченным эксплуатационным ресурсом.

Асинхронные

Генераторы данного типа отличаются долговечностью, надежностью, простотой исполнения, устойчивостью к короткому замыканию и нагрузкам, что делает возможным их совместное использование со сварочным оборудованием. Плавность течения тока дает возможность подключения оборудования, чувствительного к перепадам напряжения.

схема генератора и обзор асинхронных дизель-генераторов

Обзор асинхронных дизельных генераторов

Асинхронные дизель-генераторы подходят для снабжения электричеством техники и приборов с активными нагрузками (зарядка аккумуляторов, освещение, нагревательные элементы). Низкое выделение тепла при синтезе электрического тока не требует системы охлаждения, данный фактор позволяет герметизировать агрегат, в результате повышается класс его и влагозащиты.

Асинхронные генераторы неустойчивы к значительным перегрузкам, но существует возможность улучшения характеристик. Асинхронный генератор со стартерным усилителем может выдерживать пиковые значения.

По типу создания магнитного поля различают следующие виды:

  • устройства на постоянных магнитах, отличаются небольшой мощностью, подходят для бытового применения;
  • с независимым возбуждением — энергия поступает на обмотку от внешних источников (аккумуляторы, батареи), применяются при эксплуатации автоматической техники;
  • с самовозбуждением — обмотка получает энергию от генератора.

Существуют агрегаты с последовательным, параллельным и смешанным возбуждением.
По типу вырабатываемого тока различают следующие виды:

  • однофазные. Вырабатывают 220 В, считаются наиболее распространенными. Предназначены для применения в бытовых условиях;
  • трехфазные. Вырабатывают 380 В, обеспечивают прямое электроснабжение крупных зданий, промышленных объектов и целых поселков.

Разновидности по способу включения:

  • ручной— запуск осуществляется в ручном режиме, некоторые модели оснащены пультом дистанционного управления, дальность действия не превышает 25 м;
  • полуавтоматический — ручной пуск сочетается с автоматизацией других рабочих процессов.
  • автоматический — процесс запуска осуществляется без участия человека (автоматически). Такая система запуска важна в тех местах, где недопустимы перебои с электричеством (серверные, больницы, банки, и т.д.). Существует возможность соединения генераторов в единую сеть, управление которой осуществляется автоматизировано через диспетчерскую.

Модели стационарных и мобильных дизель-генераторов большой мощностью

Стационарная и рамная модель (для установки на прицеп или шасси) дизельных генераторов большой мощностью

Основные варианты комплектации:

  • в кожухе;
  • в металлическом контейнере;
  • открытые.

Все модификации имеют определенные особенности. Подбирать генераторы постоянного тока необходимо под конкретную задачу, даже бесшумную модель рекомендуется эксплуатировать с кожухом или коробом. Генераторы могут использоваться в качестве постоянного и временного источника электроэнергии, подобрать подходящую модель поможет специалист.

Преимущества и недостатки

Преимущества дизельных генераторов постоянного тока:

  • экономичность;
  • высокая производительность;
  • возможность функционирования в тяжелых условиях при низких температурах с повышенной запыленностью;
  • разная мощность генераторов дает возможность их применения для решения самых разных задач, вне зависимости от уровня и класса;
  • экономичность;
  • стопроцентная заводская готовность всех модулей, требуется только подключение;
  • возможность интенсивной эксплуатации.

К недостаткам установок данного типа можно отнести большие габариты и тяжелый вес, а также высокую стоимость. Все недостатки компенсируются многочисленными преимуществами.

Модели, производители и цены

Стоимость установок варьируется в пределах нескольких сотен тысяч рублей, существует несколько десятков компаний-производителей. Наибольшим спросом пользуются установки Sdmo, Aksa, Cummins, Wilson. Одним из известных мировых производителей дизельных генераторов постоянного тока является компания R.I.D. GmbH.

Основные производители дизельных генераторов

Ранок производителей огромный и перечислять все модели не имеет смысла, самый важный принцип выбора — моторесурс до планового ТО, стоимость обслуживания и доступность запчастей

Популярные модели: RID 10/48 DC E-SERIES S, RID 15/48 DC E-SERIES и другие, стоимость варьируется в пределах 430-780 тыс. руб.
В России производством ДГУ постоянного тока занимается ТСС Славянка, стоимость генераторов варьируется в пределах 200-500 тыс. руб.

Применение

Дизельные генераторы постоянного тока используются в самых разных сферах, их востребованность объясняется свойством обеспечивать беспрерывное электроснабжение в самых суровых условиях эксплуатации.

Дизельные генераторы постоянного тока На транспорте, морских судах

Размеры и внешний вид дизельных генераторов постоянного тока, применяемых на транспорте и морских судах

На транспорте, морских судах, предприятиях электролизной промышленности, на металлургических заводах без устройств постоянного тока не обойтись. Электростанции данного типа устанавливаются также в тепловозы, в торговые и складские комплексах, в медицинские учреждения, они применяются в геологии, нефтедобыче.

Другие сферы применения:

  • телекоммуникационные системы;
  • зарядка электротранспорта;
  • источники бесперебойного питания;
  • авиационный и железнодорожный транспорт;
  • военная техника;
  • гибридные энергосистемы.

Устройство может использоваться в качестве отдельного и вспомогательного источника энергии. Дизельные генераторы пользуются повышенным спросом в ситуациях, когда предъявляются повышенные требования к надежности подачи тока. При выборе модели важную роль играет количество потребителей энергии, характер нагрузки и номинальная мощность.

Применение в домашних условиях

Дизельные электрогенераторы подходят также для домашнего применения, без них не обойтись в местности, где часто случаются перебои с электроэнергией. При выборе устройства домой или на дачу, основным критерием считается бесшумность агрегата.

Важно также правильно выбрать место для установки, генератор не должен мешать окружающим. Электростанция может устанавливается недалеко от дома, предпочтение следует отдавать моделям в контейнере, пространство под установку предварительно бетонируется.

В доме для мини-электростанции должно быть предусмотрено отдельное помещение, вокруг установки со всех сторон должно оставаться пространство как минимум 1 м. Перед покупкой электрогенератора необходимо учитывать, что к помещению, где он будет размещен, предъявляются определенные требования, вес фундамента должен в 1,5 раза превышать массу установки, основание должно включать изоляционные материалы.

Важную роль играет также обеспечение вентиляции, в помещение должен быть обеспечен приток холодного воздуха и отток горячего, для этого обустраиваются специальные проемы, выхлопные газы должны выводиться через отдельную трубу.

Устройство и принцип работы дизель – генератора

Дизель – генераторы невероятно нужные агрегаты, способные обеспечивать электроэнергией там, где нет сети, так же они могут временно заменить центральную сеть и предотвратить срыв деятельности целых организаций. Что же касается больниц, то тут они попросту незаменимы. Дизель – генераторы имеют очень разнообразные конструкции, которые зависят от многих факторов, например, таких как место и условия применения. В этой статье мы и рассмотрим устройство дизельных генераторов и их применение.

Принцип работы

Генератор представляет собой устройство, призванное преобразовывать вращательную энергию механического типа в электрическую энергию.

Сам по себе генератор энергию не делает. Для тог чтобы на выходе появилась ЭДС необходимо вращать генератор дизельным или другим двигателем. Движение обмоток, относительно магнита или друг друга, создает электродвижущую силу в этих обмотках, которая и дает ток определенной силы на выходе устройства. Чтобы было проще понять такой процесс, его можно сравнить с насосом, который точно так же не создает воду, а прокачивает ее через себя.

В основе работы любого генератора лежит закон магнитной индукции, который подразумевает появление электродвижущей силы в проводнике, который движется в магнитном поле. При таком движении на концах провода возникает разность потенциалов, что, в свою очередь, заставляет двигаться заряженные частички, тем самым создавая течение тока.

Из чего состоит генератор

Движущей силой любого генератора является двигатель, который приводит в действие сам генератор. Для работы двигателя необходима топливная система, а для стабильности напряжения, вырабатываемого генератором, регулятор напряжения. Не менее необходимой является и система охлаждения, как двигателя внутреннего сгорания, так и самого генератора. Еще одним важным компонентом является система смазки. На станине, которая содержит все узлы и агрегаты находится так же зарядное устройство для аккумулятора и панель управления. Также в обязательном порядке присутствует глушитель шума.

Двигатель

Схема подключения генератора кавитации к топливной системе

Двигатель служит источником механической энергии, которую и будет преобразовывать генератор. Во всех случаях от мощности дизеля зависит и мощность самого генератора. При выборе силовой установки нужно учитывать несколько важных моментов, которые в обязательном порядке указываются заводом изготовителем.

Тип топлива

Двигатели внутреннего сгорания, которые приводят генератор в действие, могут питаться бензином, газом или дизельным топливом. Если мощность генератора не велика, выгоднее использовать двигатель именно бензинового типа, если же от машины требуется большая мощность, в перспективе дизели и ДВС на газу. Существуют так же силовые установки, которые работают сразу на двух типах топлива.

топливо для дизель генератора

Самыми распространенными двигателями внутреннего сгорания являются верхнеклапанные модели. Их клапаны находятся в самой головке цилиндров, а не в блоке, как у других типов ДВС. К преимуществам верхнеклапанных моделей можно отнести компактный внешний вид, простоту, надежность, удобство в ремонте, а также не большой шум и менее токсичный выхлоп. Из недостатков таких силовых установок следует выделить их дороговизну.

Генератор переменного тока

Является незаменимым звеном в цепочке генерации электрической энергии. Сам генератор состоит из стационарного корпуса, статора и подвижного ротора, который вращается в статоре. Все узлы генератора построены и расположены таким образом, чтобы обеспечить максимально точное перемещение обмоток в магнитном поле. Статор представляет собой неподвижную часть, в которой расположен сердечник с намотанной на него обмоткой. Ротор (якорь) является подвижной частью, которая создает вращающееся магнитное поле. Ротор бывает щеточным, с намотанной обмоткой, и бесщеточным, в виде постоянного магнита. Ротор создает магнитное поле, которое вращаясь, создает в обмотках статора электродвижущую силу и, как следствие, ток.

Генератор переменного тока

При оценке генератора следует обратить внимание на материал его корпуса, металлические модели более прочные и долговечные. В пластиковых аналогах происходит деформация, и смещение рабочих поверхностей, что со временем приводит к уменьшению мощности машины и даже ее порче. Ротор крепится в статоре на подшипниках, подшипники шарикового типа более предпочтительны, нежели роликовые. Генератор бесщеточного типа вырабатывает более стабильное напряжение и имеет большую долговечность.

Система питания

В среднем генератор способен проработать на одной заправке около 7-ми часов. В небольших моделях топливный резервуар является частью станины или крепится на ней. Если же генератор используется в стационарном режиме на предприятии, его оснащают внешним баком, который позволяет работать намного дольше. Топливная система большинства генераторов состоит из трубопровода, который доставляет топливо из бака в двигатель и обратно, вентиляции топливного резервуара, топливного насоса, который закачивает горючее из бака в двигатель. Также важной вещью является фильтр топлива, который отделяет от него воду и мусор. Для распыления дизельного топлива в цилиндры служат форсунки.

Регулятор напряжения

Регулятор напряжения

Как видно из названия это устройство призвано регулировать выходное напряжение системы. Ниже мы подробно опишем принцип работы регулятора.

Реле осуществляет преобразование переменного тока в постоянный, а реле – регулятор отбирает небольшую часть энергии и направляет его на вторичные обмотки, так же известные как обмотки возбуждения. Присутствуют также вращающиеся выпрямители, которые нужны для преобразования переменного тока обмоток возбуждения в постоянный.

Этот подготовительный процесс запуска длится до тех пор, пока генератор не возбудится и не начнет вырабатывать полное напряжение. Регулятор следит за состоянием выходного напряжения, и если оно превосходит заданные рамки, регулятор уменьшает напряжение возбуждения. Когда генератор работает в заданном режиме, регулятор просто поддерживает необходимое напряжение возбуждения.

Если нагрузка, прилагаемая к генератору, растет, напряжение его соответственно немного падает, и реле – регулятор добавляет питание ротору, таким образом, выходное напряжение достигает установленного значения. Цикл продолжается снова до выхода генератора на свою полную рабочую мощность.

Охлаждающая система

Охлаждающая система, схема

Двигатель дизельного генератора греется от трения движущихся частей и от тепла сгораемых газов. Очень важно удержать температуру двигателя в заданных пределах и отвести лишнее тепло.

Очень часто в генераторах в качестве охлаждающего вещества применяется обычная вода. Для обмоток самого генератора часто применяют водород, благодаря своей хорошей теплоотдаче он работает превосходно. Тепловая энергия передается через газ вторичному контуру охлаждения, который отбирает ее посредством дистиллированной воды. Оконечным контуром системы охлаждения является радиатор с принудительной подачей воздуха.

За охлаждающей системой необходимо тщательно следить и проверять уровень хладагента. Так же нужно следить за исправностью помпы (устройство подачи охлаждающей жидкости). Завод изготовитель обычно рекомендует, через какое количество времени работы нужно проводить профилактику системы охлаждения. Сам генератор обязательно должен находиться в проветриваемом помещении.

Смазочная система

Смазочная система

Для того чтобы сам двигатель внутреннего сгорания и генератор, работающий в паре с ним, прослужили долго, они обязаны иметь хорошую систему смазки. ДВС получает смазку, как и все подобные машины, из картера через маслопровод и масляные фильтры. Каждые 7 – 8 часов работы двигателя необходимо производить проверку уровня масла и отсутствие утечек. После определенного количества проработанных мот часов, масло нужно менять.

Зарядное устройство

В основном двигатель, приводящий в движение генератор, запускается от аккумулятора. Для того чтобы батарея была все время заряженной и существует зарядное устройство. Напряжение зарядки должно иметь установленную величину, ведь при слишком низком или высоком значении аккумулятор либо сядет, либо быстро выйдет из строя. Корпус устройства заряжающего аккумулятор во избежание коррозии изготавливают из нержавейки. Система полностью автоматическая и не нуждается в обслуживании или настройке.

Управляющая панель

Управляющая панель генератора

Панель управления позволяет управлять генератором, каждая отдельно взятая модель имеет свой пульт, и о некоторых из них мы расскажем ниже. Панель управления позволяет осуществлять автоматический запуск генератора в случае отсутствия электричества в сети. Также существует возможность следить за работой машины и в случае необходимости производить автоматическое отключение генератора.

Система контроля, которая включает в себя датчики, позволяет следить за состоянием двигателя и генератора во время работы, в том числе за давлением масла, температурой, напряжением аккумулятора, частотой вращения системы и временем ее работы. Автоматическая система защиты останавливает работу системы в случае аварийного сигнала, полученного от одного из датчиков. Контроль ведется не только за ДВС, но и за генератором.

Станина

Дизель генератор возле дома.

Любой генератор основывается на раме, которая содержит несущую часть и кожухи, защищающие саму машину и обслуживающий персонал. Также в обязательном порядке должен присутствовать заземлитель. Несущая рама служит для жесткой фиксации всех агрегатов относительно друг друга и поверхности земли. Зачастую вся установка устанавливается в специальном контейнере, который защищает машину от воздействия со стороны окружающей среды.

Система выхлопа

При работе дизельного двигателя, как и любых других двигателей внутреннего сгорания, вырабатывается токсичный газ, который должен, тщательно отводится из помещения. В качестве системы отвода и глушения шума выступает выхлопная установка. Системе выхлопа следует уделять максимальное влияние, так как при халатном к ней отношении возможно отравление персонала выхлопным газом.

Трубы для отвода газа чаще всего делают из железа и чугуна. Устанавливаются на корпус двигателя и станину они не жестко, чтобы исключить влияние вибрации и как следствие порчу ДВС. Конечная часть выхлопной трубы выводится на улицу, в отдалении от окон и других проемов, ведущих в здание.

Еще одной важной функцией выхлопной системы является глушение шума работы двигателя. Для этой цели применяется система глушителей и таким образом громкость шума доводится до необходимого уровня.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: