Термокомпенсированный реле регулятор напряжения генератора

Реле-регулятор с термокомпенсацией

Вниманию читателей предлагается автомобильный реле-регулятор на микроконтроллере PIC12F675, встраиваемый в штатный корпус регулятора. Основная его особенность — поддержание оптимального напряжения на выводах аккумуляторной батареи при работающем двигателе в зависимости от её температуры.

В журналах и Интернете довольно много сказано о "жизни" автомобильных аккумуляторных батарей (АКБ) и представлено немало различных зарядных устройств, от простых до сложных, восстанавливающих "жизнь" АКБ. Большой интерес обусловлен тем, что автомобильные реле-регуляторы напряжения зачастую не обеспечивают оптимальной подзарядки батареи, особенно в зимнее время. К тому же зарядные устройства предназначены для профилактической зарядки вне автомобиля, что не совсем удобно. Как известно, напряжение свинцового аккумулятора зависит от его температуры. Чем ниже температура, тем ниже скорость протекания химических реакций и тем больше должно быть приложено напряжение к АКБ при зарядке. Штатные реле-регуляторы зачастую построены по простым компараторным схемам и неспособны обеспечить правильную зарядку. В продаже есть и тер-мокомпенсированные регуляторы, но установленные внутрь генератора, и нагревшись от двигателя, они также неспособны правильно следить за температурой АКБ. Существуют ещё трёхуровневые регуляторы, но они требуют хотя и редкого, но ручного переключения режима по напряжению (например, "минимум", "норма", "максимум") в соответствии с температурой за бортом автомобиля.

Предлагаемое устройство заменяет штатный реле-регулятор напряжения и позволяет эффективно использовать АКБ, не допуская её перезарядки и недозарядки при изменении температуры самой АКБ.

Схема регулятора представлена на рис. 1. Его "сердцем" является микроконтроллер DD1 PIC12F675-I/SN, тактирующийся от внутреннего генератора частотой 4 МГц. На микроконтроллер через делитель на резисторах R1 и R2 подаётся напряжение непосредственно с плюсового вывода аккумулятора (+АКБ). На ней же и закреплён датчик температуры ВК1 (LM135Z). Это аналоговый датчик с линейной зависимостью напряжения от температуры (ТКН = +10 мВ/К). Конденсаторы С1 и СЗ — помехоподавляющие. Микроконтроллер с помощью встроенного АЦП преобразует аналоговый сигнал датчика в цифровой код. Шаг измерения температуры в программе — 2 °С. По полученному значению программа вычисляет нужное напряжение.

Вычисление происходит на основе загруженной таблицы, построенной по графику, показанному на рис. 2. Вычисленное напряжение сравнивается с реальным на аккумуляторе, и если оно меньше необходимого, то микроконтроллер включает обмотку возбуждения (ОВ) генератора автомобиля. Чтобы исключить многократные переключения на пороговых значениях напряжений, предусмотрен гистерезис около 0,2 В между включением и выключением ОВ. Обмотка управляется ключом на полевом транзисторе VT1 IRLR2705. Для повышения надёжности устройства и ускорения переключения транзистора VT1 затвор последнего подключается сразу к двум выходам GP4 и GP5 микроконтроллера DD1. Питается микроконтроллер напряжением +5 В от интегрального стабилизатора DA1 L78L05CD. Такое же напряжение используется и в качестве образцового для внутреннего АЦП микроконтроллера. Сток транзистора VT1 подключён к проводу, идущему на зажим Ш, а через диод VD1 — к проводу, идущему на зажим В штатного реле-регулятора (см. схему электрооборудования автомобиля ВАЗ-2109). Потребляемый ток устройства — около 4 мА.

Печатная плата изготовлена из одностороннего фольгированного стеклотекстолита размерами 27×21 мм. Чертёж платы показан на рис. 3, а на рис. 4 — расположение элементов в масштабе 2:1. Все резисторы и неполярные конденсаторы — для поверхностного монтажа типоразмера 0805, С4 — оксидный танталовый типоразмера А или В. К контактным площадкам на плате припаяны выходящие наружу через отверстие провода со стандартной четырёхконтактной колодкой на конце. Собранный регулятор помещён в корпус штатного реле-регулятора автомобиля ВАЗ-2109 старого образца. Корпус был аккуратно вскрыт, и на место старой платы приклеена новая. Датчик температуры LM135Z приклеен к толстой латунной шайбе теплопроводя-щим клеем. Эту шайбу затем фиксируют болтом крепления плюсового провода к выводу АКБ. К ней же припаивают питающий провод устройства, идущий от зажима Б.

Разьём ICSP для программирования не предусмотрен, поэтому микроконтроллер необходимо запрограммировать заранее либо соединить разъём программатора с соответствующими печатными площадками на плате тонкими проводами.

Внешний вид собранного регулятора показан на рис. 5. Его необходимо наладить при температуре +20 °С до установки в корпус. Отключают датчик температуры ВК1 и резистор R1, к затвору транзистора VT1 подключают вольтметр (желательно цифровой). Далее от

регулируемого источника питания подают напряжение +13,8 В на вход стабилизатора DA1 и проверяют наличие напряжения +5±0,1 В на его выходе. На затворе VT1 должен быть высокий логический уровень. Подключают вывод резистора R1. В этот момент высокий логический уровень на затворе VT1 должен смениться на низкий. Подборкой резистора R2 добиваются чёткого появления высокого уровня при напряжении 13,6 В и низкого при 13,8 В. Затем подключают вывод датчика температуры ВК1. При +20 °С порог переключения должен быть 14. 14,2 В. Подключив маломощную лампу на 12 В между стоком транзистора VT1 и плюсом источника питания, убеждаются в правильном переключении транзистора при изменении напряжения питания. На этом налаживание можно считать законченным.

При установке на автомобиль необходимо следить, чтобы провода от регулятора не оказались рядом с высоковольтными, а также защитить контактную колодку от попадания воды и грязи. Желательно применить экранированные провода для цепей питания и датчика температуры.

Этот регулятор напряжения эксплуатируется на автомобиле уже два года, и сбоев замечено не было. Во время лютых сибирских морозов аккумулятор отдавал заметно больший ток стартёру, а в жаркие дни не перезаряжался.

Программу микроконтроллера и чертёж печатной платы в формате Lay можно скачать здесь.

Автор: Н. Овчинников, г. Красноярск

Мнения читателей
  • Alexandr2021 / 24.01.2021 — 21:07

Извеняюсь за глупый вопрос. Может есть у кого исходник для Proteus. Хочу поредактировать таблицу и заодно научится в нем работать! Буду признателен ссылке на проэкт!

Alex, большущее спасибо Вам за прошивку! В ближайшее время займусь прошивкой и о результатах отпишусь)))

Алекс, спасибо что ответили. Вы знаете, к сожалению, прошивку скачать с этого сайта не удалось. Сайт заблокирован и не открывается. Но у Вас наверняка осталась в компе прошивка. Если можно, вышлите на мою электронную почту, я готов материально Вас отблагодарить. Реле регулятор у меня находится не в генераторе, а в мозгах (в компьютере), комп Моторола, который перепрошивке не поддаётся, вот и приходится изобретать выносное реле, и хотелось бы с термокомпенсацией.моя почта volga2008d@ukr.net

Александр, моя схема Вам ничего не даст т.к. она значительно отличается от авторской наличием дополнительных узлов. Кроме того, у нас с Вами разные генераторы.Регулятор у меня выполнен в виде выносного блока,а у Вас он встроен в генератор.В авторской прошивке действительно при -5 грд. напряжение 15,2 В. У меня характеристика термокоррекции, как у коррекции ТОРН-7. Максимальное напряжение при -40. -20 грд. 14.8 В. При +25 грд. 14,0 В. При +40 грд. 13,8 В.Файл прошивки можете скачать по ссылке.https://drive.google.com/open?id=1YTITxGwMtufnZPbb69r-XYCcbpJPjQD0

Aleх, а Вы не можите подилиться со мной схемой и прошивкой, потому что на этой прошивке при -5 напряжение борт сети 15,2В, мне кажется, что это многовато и почему-то идёт моргание света на дисплеи приборной панели. Может нужно уменьшить гистерезис до 0,1В. (Авто ГАЗ 31105 крайслер).Буду очень благодарен за помощь.

Поправка к посту — вывод 5 микроконтроллера

Работу регулятора можно проверить, например, в Proteus 7.

Файл прошивки firmware.HEX в архиве проверен — рабочий. Однако если создать проект по файлу исходника Rn_675_t3.asm, то можно изменитьхарактеристику термокоррекции. Кроме того, автор предусмотрел индикацию индикацию неисправности датчика(например,обрыв проводки)и работу регулятора без него. Напряжение бортсети будет 13,8 В. Это очень ценное качество данного регулятора !Практически, водитель может даже не заметить отказ датчика. Если задействовать вывод 6 МК, то будет индикация (в файле прошивки firmware.HEX Функция обрыва датчика работает, но нет индикации) обрыва датчика — светодиод будет часто мигать. Светодиод на землю через резистор.

Взял за основу схему данного регулятора для установки в ВАЗ-3103. Схема и прошивка изменены. Регулятор эксплуатируется с ноября 2019г. Замечаний к работе нет. Спасибо автору за хороший проект с исходником.

Да нет, диод я перевернул сразу,а теперь сомневаюсь, может надо было не трогать и установить как показано на схеме.Напишите, кто собирал это реле, кто как устанавливал это реле?

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Реле-регулятор напряжения: принцип действия

Трехуровневый регулятор напряжения: схема подключения, как проверить, признаки неисправности

Трехуровневый регулятор напряжения (РН) представляет собой один из основных составляющих элементов генераторного устройства. Как известно, выход из строя генератора может привести к неработоспособности автомобиля в целом, поэтому состояние всех его деталей и механизмов всегда должно быть рабочим. Подробнее о регуляторе, его разновидностях, а также диагностике вы можете узнать из этого материала.

Характеристика регулятора напряжения

Что такое регулятор постоянного тока, какую роль он играет в автомобильном генераторе, какое напряжение должен выдавать генератор? Можно ли поднять и увеличить количество выдаваемого параметра с помощью простейшего трехуровневого устройства? Для начала давайте разберем, какова конструкция элемента и в чем заключается его предназначение.

Назначение

Итак, для чего применяется электронный регулятор напряжения генератора автомобиля? При запуске силового агрегата, как известно, в первую очередь начинает вращаться коленчатый вал, это происходит в результате воздействия на него постоянного тока. Ток в амперах осуществляет начало движения роторного механизма, после чего начинает функционировать генераторный узел. Регулятор постоянного напряжения используется для контроля всех процессов.

Трехуровневый регулятор напряжения: схема подключения, как проверить, признаки неисправности

Если напряжение будет не высоким, а из-за выхода из строя регулятора напряжения генератора мощность механизма будет отсутствовать, узел запустить не получится. При отсутствии мощности генератора ток в амперах просто не будет подаваться на оборудование. Простой регулятор напряжения дает возможность удерживать ток в амперах в указанном диапазоне, это его основное предназначение.

Конструкция

Теперь разберем вопрос устройства: любой повышающий РН, даже простой и самодельный, будет состоять из:

  1. Выпрямительного блока. Этот элемент включает в себя несколько диодных компонентов, обычно их количество равно шести. Все компоненты этого блока подключаются между собой по специальному мосту.
  2. Роторный механизм с обмоткой. Это устройство осуществляет вращение вокруг оси, его предназначение заключается в образовании магнитного поля внутри узла.
  3. Статорный механизм. На корпусе данного устройства расположены три обмотки, подключенные друг к другу. Благодаря этим обмоткам обеспечивается не только обеспечение более повышенного заряда, а также увеличения мощности для автомобильного аккумулятора. Они также позволяют обеспечить током всю электросеть транспортного средства.
  4. Крыльчатки. Данный элемент устанавливается на внешней части механизма. Крыльчатка используется для обдува и охлаждения обмотки, без нее возможен перегрев последней.
  5. Корпусная крышка. Ее назначение заключается в скрытии все составляющих конструктивных частей узла, благодаря чем у обеспечивается надежная защита устройства от воздействия грязи и пыли. В зависимости от модели, крышка может иметь специальный кожух — если конструкция подразумевает его наличие, то регуляторный элемент будет расположен сразу за ним.
  6. И само реле. Если генератор выдает большое напряжение, не свойственное для бортовой сети, или слишком низкое, то реле позволит стабилизировать этот параметр до нужного уровня. Стабилизатор должен обеспечить именно оптимальное напряжение, не повышенное и не пониженное (автор видео — Виталий Галанкин).
Читайте также  Тахометр который работает от генератора

Принцип работы

В том случае, если вы решите подключить обмотку без регуляторного устройства к источнику питания, то значение постоянного тока после подсоединения, разумеется, будет повышенным. С помощью данного устройства осуществляется выравнивание значения, что позволяет предотвратить поломку оборудования. Регуляторное устройство асинхронного генераторного узла — это, фактически, выключатель. Если напряжение на зажимах генератора не соответствует норме, механизм осуществляет регулировку параметра до нужного значения.

Перед тем, как повысить напряжение генератора, необходимо точно узнать, сколько должен быть параметр на конкретном устройстве. В идеале значение должно варьироваться в районе 14-14.2 вольт, но допускается от 13.6 вольт. Здесь многое зависит от модели автомобиля и самого генераторного узла, установленного на нем. Поэтому точно узнать, сколько вольт должно быть, нужно в технической документации.

Следует отметить, что выработка параметра производится по принципу — когда вращается роторный узел, на обмотку поступает невысокое напряжение, а в ходе вращения на выводах механизма образуется переменный ток. Впоследствии он передается на обмотку. Если вы не знаете, как повысить напряжение генератора, то в первую очередь следует проверить качество натяжки самого ремня. Как правило, о необходимости увеличивать и повышать значение напряжения автовладельца задумываются в том случае, если ремешок устройства ослаб, хотя его нужно просто подтянуть (автор видео — канал T-Strannik).

Разновидности

Схема подключения РН практически идентична на всех видах генераторных узлов, однако существуют определенные разновидности девайсов.

Какие виды РН можно найти в продаже:

  1. Двухуровневые РН. Такие регуляторы на сегодняшний день считаются устаревшими, в большинстве своем они используются на отечественных авто. Конструктивно такой РН состоит из электромагнитного элемента, подключаемого к контроллеру обмотки. Также устройство оснащается пружинами, которые используются как задающие элементы, и подвижным рычагом, использующимся для стабилизации. Двухуровневые РН обычно небольшие по размерам. Существенным минусом девайсов такого типа считается невысокий срок службы, в результате чего они довольно быстро выходят из строя.
  2. Полупроводниковые РН на 40 ампер. В отличие от вышеописанных, такие РН обладают более высоким сроком службы, а это, в свою очередь, обеспечивает их более стабильную работу на протяжении всего ресурса эксплуатации.
  3. Трехуровневные РН. Такие девайсы по конструктивным особенностям схожи с вышеописанными. Единственно и важно отличие заключается в наличии в конструкции добавочного сопротивления.
  4. Многоуровневые РН. Как можно понять из названия, такие РН имеют много уровней защиты благодаря тому, что в их конструкции может быть 3-5 добавочных сопротивлений. В результате этого многие специалисты считают, что такое РН более эффективны и надежные, чем другие виды.

Фотогалерея «Самые распространенные виды РН»

Трехуровневый регулятор напряжения: схема подключения, как проверить, признаки неисправности

1. Двухуровневый РН для автомобиля ГАЗ

Трехуровневый регулятор напряжения: схема подключения, как проверить, признаки неисправности

2. Трехуровневый РН

Выносной регулятор

Нередко случается у водителей такое. Запаливаются щётки генерирующего устройства. Регулятор встроен вместе с щётками. Приходится менять всё вместе. И тут совет от знатоков: лучше поставь внешний регулятор, чем встроенный. Уж больно не хвалят модели, выпущенные в последнее время.

Хорошо, думаешь, поставлю внешний, только как его подключать? Оказывается, есть удобная схема, которая позволяет легко всю эту модернизацию осуществить.

Некоторые важные моменты:

  • нельзя путать фишки на регуляторе под номерами 67 и 15 (первая должна соединяться с генерирующим устройством, а вторая – идти на предохранители);

Вот как выглядит схема подключения


Схема подключения выносного и встроенного реле

На нижнем фото видим схему, которая показывает подключение уже встроенного реле регулятора.

Она подходит для подключения на «пятёрки», «семёрки», ВАЗ 2104, если ГУ установлено от ВАЗ «копейки». Как видим, реле регулятор выносного типа подключается посредством двух выводов. 15-й вывод идет на предохранитель.

Второй вывод 67 соединяется с генератором. Провод соединяется с фишкой от щёток.

Также реле выносного типа должно соединяться с массой – любой частью кузова.

Реле – это не что иное, как выключатель, служащий для смыкания и отключения отдельных зон электрической цепи, происходящих при конкретных показателях электровеличин. Реле машины иначе называют коммутатором нагрузочного напряжения, и это верно на все 100 процентов. Когда ГУ, вентилятор или стартер потребляет тока больше, чем нужно, реле срабатывает.


Каким бывает регулятор напряжения

Реле состоит из магнита электрического типа, якоря и переключателя. Электромагнитом выступает в данном случае трос, обвитый вокруг индуктора с магнитным стержнем, а якорем – особая пластина, управляющая контактами.

Как только электрическое напряжение проходит сквозь обмотку магнита, возникает электрическое поле. Специальный толкатель прижимает якорь к сердечнику и, тем самым, переключаются контакты.

Внимание. Известно два типа реле, применяемых на автомобилях ВАЗ. Это неконтактное реле-регулятор и МЭР (электрический). Именно схема последнего реле показана на картинке ниже.

Статья в тему: Необходимые документы для страховой выплаты после ДТП по полису ОСАГО

Неконтактное реле или НЭРР представляет собой достаточно новый агрегат, не требующий никаких дополнительных корректировок или регулирования. Что касается МЭР, то это прибор старого образца, изготовление которого в настоящее время приостановлено.

Итак, ВРН или регулятор встроенный представляет собой устройство, состоящее из микросхемы, транзистора и корпуса с щётками. Если выходит из строя встроенный регулятор, то его заменяют на новый, либо устанавливают выносной.

Внешний регулятор легко инсталлировать, если следовать строго инструкции.

Модернизация подразумевает демонтаж и разбор генерирующего устройства.

Проведение диагностики РН своими руками

Теперь расскажем о том, как проверить трехуровневый регулятор напряжения своими руками. Процедура проверки регулятора может быть произведена как на СТО, так и в гаражных условиях, мы же рассмотрим второй вариант. Проверка регулятора напряжения на 40 ампер или меньше должна выполняться с помощью тестера — вольтметра либо мультиметра. Также следует учитывать, что выявление неисправностей в работе РН должно производиться исключительно при полностью заряженной АКБ.

Итак, как проверить регулятор напряжения генератора с помощью тестера:

  1. В первую очередь нужно открыть капот и повернуть ключ в замке, включив зажигание.
  2. Далее, производится запуск силового агрегата. Двигатель должен поработать вхолостую какое-то время, для получения более точных данных диагностики рекомендуется включить оптику. Число оборотов при работе двигателя должно составлять в районе 2.5-3 тысяч. Чтобы ДВС перешел в такой режим работы, обычно требуется подождать примерно 10 минут.
  3. Затем производится подключение щупов тестера к аккумуляторным выводам. Когда вы подключили тестер, на его дисплее должны высветиться показатели диагностики, в идеале они должны составлять примерно 14.1-14.3 вольта.

Если проверка показала другие значения, будь они более высокими или низкими, то нужно заняться ремонтом генераторного узла. Но как показывает практика, проблема обычно кроется именно в РН, поэтому вероятнее всего, его придется заменить. Перед тем, как приступить к диагностике, удостоверьтесь в том, что ремень нормально натянут. Во время диагностики не допускается замыкание контактов, так как это может стать причиной деформации и выхода из строя выпрямительного блока.

Термокомпенсированный реле регулятор напряжения генератора

Простой термокомпенсированный регулятор напряжения.

Большинство описанных ранее любительских регуляторов напряжения для автомобиля, а также промышленные регуляторы, которыми комплектуют серийно выпускаемые машины, предназначены для поддержания неизменяемого стабильного напряжения на выводах генератора. При повышении нагрузки (включении фар, вентилятора и других потребителей) падение напряжения на проводах увеличивается, а напряжение бортсети соответственно уменьшается, уменьшается и ток зарядки аккумуляторной батареи. Для стабилизации напряжения на зажимах батареи вход регулятора подключают непосредственно к батарее.

Как известно [Л], для нормальной подзарядки аккумуляторной батареи напряжение на ее зажимах следует увеличивать при уменьшении температуры. Поэтому независимость стабилизируемого регулятором напряжения от температуры следует считать большим недостатком.

Даже если регулятор способен корректировать напряжение в зависимости от температуры подкапотного пространства, то этого недостаточно. Настроенный на оптимальный режим летом, регулятор ставит батарею в тяжелое положение зимой, когда воздух под капотом прогревается быстро, а сама батарея — лишь после нескольких часов езды. В результате батарея остается недозаряженной, и в холодное время года приходится ее подзаряжать. Если же регулятор настроить на оптимальную работу в холодную погоду, летом батарею он будет перезаряжать, и придется периодически доливать в нее дистиллированную воду.

Наилучшим решением является контролирование регулятором температуры самой батареи и напряжения на ее зажимах. Именно такой регулятор описан в [Л], но он довольно сложен, содержит электромагнитное реле и дефицитные стабисторы в датчике температуры.

Описываемый здесь регулятор напряжения не содержит реле, в качестве датчика использованы маломощные кремниевые диоды. Кроме того, он существенно проще по схеме.

Согласно [Л], необходимый абсолютный температурный коэффициент напряжения (ТКН), который должен обеспечивать регулятор, равен —40,5 мВу°С или в относительных единицах —0,298 %/°С. Примерно такой же относительный температурный коэффициент напряжения имеют маломощные кремниевые диоды при прямом токе в несколько миллиампер, а также стабисторы, представляющие собой несколько включенных последовательно диодов. Абсолютный ТКН одного диода — около —2 мВ/°С, что при падении напряжения на нем 650 мВ дает относительное значение —2/650= =—0,307%/°С. Отметим, что относительное значение ТКН цепи из нескольких диодов или стабисторов не зависит от их числа.

Схема регулятора изображена на рис.1. Вывод Б регулятора подключают отдельным проводом к плюсовому зажиму батареи, выводы Я и Ш — к выходу выпрямительного моста генератора и к его обмотке возбуждения соответственно. Общий провод регулятора соединен с корпусом автомобиля в месте установки регулятора. Цепь из восьмидиодовV04—VD11 прикреплена к корпусу батареи и имеет тепловой контакт с ним. Эта цепь служит термозависимым источником образцового напряжения с необходимым ТКН.

При выключенном зажигании автомобиля напряжение на выводе Я отсутствует, транзисторы VT1—VT3 закрыты, напряжение питания на операционный усилитель DA1 не поступает, транзисторы VT4—VT6 также закрыты, от батареи потребляется лишь начальный ток коллектора транзисторов VT1 и VT2, который неизмеримо меньше тока саморазрядки батареи.

При включении зажигания открываются транзисторы VT1—VT3, через транзистор VT3 напряжение питания поступает на ОУ DA1. Напряжение с плюсового зажима батареи через транзистор VT2 подведено к делителю R5R6R7, а с движка резистора R6 — на инвертирующий вход ОУ DA1. На неинвертирующий вход ОУ напряжение подано с цепи диодов VD4—VD11. Пока двигатель выключен, напряжение, снимаемое с движка резистора R6, меньше падения напряжения на диодах VD4—VD11, на выходе ОУ напряжение близко к напряжению аккумуляторной батареи и транзисторы VT4—VT6 открыты, через обмотку возбуждения генератора течет ток.

После запуска двигателя генератор начинает вырабатывать ток, напряжение на батарее увеличивается, операционный усилитель DA1 переключается, транзисторы VT4—-VT6 закрываются, ток, вырабатываемый генератором, спадает, в результате чего снова происходит переключение ОУ и увеличение тока через обмотку возбуждения генератора. Открывание и закрывание транзисторов VТ4—VТ6 происходит с частотой несколько десятков или сотен герц, поддерживая необходимое напряжение на зажимах аккумуляторной батареи.

Положительная обратная связь через резистор R12 обеспечивает гистерезис ОУ и превращает ОУ в триггер Шмитта. Стабилитрон VD2 согласует выходное напряжение ОУ с порогом переключения транзистора VT4.

Особо следует отметить роль стабилитрона VD1, закрытого в нормальном режиме работы регулятора. Если бы его не было, то при обрыве проводов, идущих к датчику температуры VD4—VD11, ток через обмотку возбуждения генератора протекал бы непрерывно, напряжение бортовой сети сильно увеличилось, что опасно как для батареи, так и для других потребителей электроэнергии. Стабилитрон VD1 при отключении датчика температуры открывается и начинает работать источником образцового напряжения. Напряжение в бортовой сети хоть и увеличивается, но не так значительно, как при его отсутствии.

Читайте также  Бензиновый генератор дэу инверторный

Все элементы регулятора, кроме диодов VD4—VD 11, размещены на печатной плате размерами 93х60 мм из стсклотекстолита толщиной 1,5 мм. Чертеж платы показан на рис.2. Транзистор VT6 установлен На плате без теплоотвода на двух латунных втулках, выводы базы и эмиттера впаяны непосредственно в плату. Плата рассчитана на установку в корпус электромеханического реле-регулятора РР-24 на трех латунных стойках с резьбой. Выводами служат соответствующие выводы на корпусе.

Датчик температуры состоит из сложенных в пакет трех пластин размерами 80х30х2 мм — одной латунной и двух стеклотекстолитовых. В средней стеклотекстолитовой пластине примерно в ее середине прорезано окно размерами 50х8 мм. В это пространство уложены восемь соединенных последовательно диодов. Выводы из провода МГТФ-0,14 помещены в ПВХ трубку, уложенную в узкий паз, пропиленный в средней пластине.

Вся конструкция склеена в единое целое эпоксидной шпаклевкой, ею же заполнена внутренняя полость средней пластины. Латунную пластину перед склеиванием необходимо залудить, все детали датчика — тщательно обезжирить. Выводы датчика припаяны непосредственно к соответствующим точкам печаткой платы. Выводы желательно для надежности дополнительно прикрепить к корпусу регулятора небольшим хомутом.

Латунной пластиной датчик слегка вдавлен в разогретую мастику заливки батареи. Если она не имеет мастичной заливки, латунную пластину следует прижать к ровному участку боковой поверхности корпуса батареи резиновым кольцом, вырезанным из колесной камеры. Вывод Б регулятора удобнее подключить не к плюсовому выводу батареи, а к плюсовому тоновому зажиму стартера.

В регуляторе вместо КТ3102А (VTl, VT3, VT4) и КТ208К (VT2) могут быть использованы практически любые маломощные кремниевые транзисторы соответствующей структуры. Транзистор VT5 должен допускать ток коллектора не менее 150 мА; здесь можно использовать транзисторы из серий КТ208, КТ209, КГ313, КТ3108, КТ814, КТ816 с любым буквенным индексом. Предпочтение следует отдать транзисторам в металлическом корпусе. Стабилитрон VD2 — любой на напряжение 3,3. 7 В.

Диод VD3 может быть любым на прямой ток не менее ЗА. Диоды серии КД206 удобно монтировать на плате, так как на их корпус выведен анод. Конденсаторы С1, С2, С4 — КМ5 или КМ6, СЗ -К53-1 или К53-4. Применение конденсаторов серии К50 или К52 нежелательно. Дроссель L1 — ДМ-0,1; постоянные резисторы — МТ или МЛТ, подстроечный R6 — СПЗ-19а.

Налаживать устройство следует в определенном порядке. Сначала к выводу Б регулятора и к корпусу подключают регулируемый источник постоянного напряжения до 16,5 В и измеряют потребляемый от него ток. Стрелка микроамперметра на 100 мкА не должна заметно отклоняться.

Далее между выводом Ш и общим проводом подключают резистор сопротивлением 120 Ом мощностью 2 Вт с параллельно включенным вольтметром (или маломощную лампу накаливания на напряжение 18. 24 В). Вывод Я подключают к тому же источнику, установив его напряжение равным 13,6 В, и резистором R6 устанавливают такой порог переключения, при котором выходное напряжение на выводе Ш близко к нулю при увеличении напряжения источника сверх 13,6 В и близко к напряжению питания при уменьшении напряжения ниже этого значения.

Затем отключают цепь диодов VD4—VD11 и подбирают стабилитрон VD1, добиваясь аналогичного переключения регулятора при напряжении источника питания 16. 16,5 В. При подборке, если окажется необходимым, можно последовательно со стабилитроном VD1 включить один—два маломощных кремниевых диода в прямом направлении.

Более точную регулировку проводят на автомобиле. Полностью зарядив батарею аккумуляторов, вольтметром (лучше цифровым) измеряют напряжение на его выводах без нагрузки. Запускают двигатель без стартера и резистором R6 устанавливают измеренное значение напряжения на зажимах батареи.

При наличии амперметра на автомобиле критерием правильной регулировки устройства может служить значение зарядного тока спусти 5. 10 мин после запуска двигателя при средней частоте вращения коленчатого вала и заряженной батарее. Ток должен быть в пределах 2. 3 А независимо от мощности включенной нагрузки.

Описанный выше регулятор с традиционным термокомпенсированным стабилитроном Д818Б вместо диодов VD1 и VD4—VD 11 несколько лет работал на автомобиле ГАЗ-24. В летнее время приходилось доливать в батарею воду, весной и осенью — подзаряжать ее. После установки датчика VD4—VD11 необходимость в указанных операциях отпала.

Вместе с использованием тиристорно-транзисторното блока электронного зажигания с удлиненной искрой, обеспечивающим быстрый запуск двигателя в самых различных условиях эксплуатации, описанный регулятор напряжения позволил довести срок службы аккумуляторной батареи до девяти лет.

С.БИРЮКОВ г.Москва

Ломанович В.А. Термокомпенсированный регулятор напряжения. —Радио, 1985, N 5, с. 24-27.

Термокомпенсированный регулятор напряжения генератора

Вниманию читателей предлагается автомобильный реле-регулятор на микроконтроллере PIC12F675, встраиваемый в штатный корпус регулятора. Основная его особенность – поддержание оптимального напряжения на выводах аккумуляторной батареи при работающем двигателе в зависимости от её температуры.

В журналах и Интернете довольно много сказано о "жизни" автомобильных аккумуляторных батарей (АКБ) и представлено немало различных зарядных устройств, от простых до сложных, восстанавливающих "жизнь" АКБ. Большой интерес обусловлен тем, что автомобильные реле-регуляторы напряжения зачастую не обеспечивают оптимальной подзарядки батареи, особенно в зимнее время. К тому же зарядные устройства предназначены для профилактической зарядки вне автомобиля, что не совсем удобно. Как известно, напряжение свинцового аккумулятора зависит от его температуры. Чем ниже температура, тем ниже скорость протекания химических реакций и тем больше должно быть приложено напряжение к АКБ при зарядке. Штатные реле-регуляторы зачастую построены по простым компараторным схемам и неспособны обеспечить правильную зарядку. В продаже есть и тер-мокомпенсированные регуляторы, но установленные внутрь генератора, и нагревшись от двигателя, они также неспособны правильно следить за температурой АКБ. Существуют ещё трёхуровневые регуляторы, но они требуют хотя и редкого, но ручного переключения режима по напряжению (например, "минимум", "норма", "максимум") в соответствии с температурой за бортом автомобиля.

Предлагаемое устройство заменяет штатный реле-регулятор напряжения и позволяет эффективно использовать АКБ, не допуская её перезарядки и недозарядки при изменении температуры самой АКБ.

Схема регулятора представлена на рис. 1. Его "сердцем" является микроконтроллер DD1 PIC12F675-I/SN, тактирующийся от внутреннего генератора частотой 4 МГц. На микроконтроллер через делитель на резисторах R1 и R2 подаётся напряжение непосредственно с плюсового вывода аккумулятора (+АКБ). На ней же и закреплён датчик температуры ВК1 (LM135Z). Это аналоговый датчик с линейной зависимостью напряжения от температуры (ТКН = +10 мВ/К). Конденсаторы С1 и СЗ – помехоподавляющие. Микроконтроллер с помощью встроенного АЦП преобразует аналоговый сигнал датчика в цифровой код. Шаг измерения температуры в программе – 2 °С. По полученному значению программа вычисляет нужное напряжение.

Вычисление происходит на основе загруженной таблицы, построенной по графику, показанному на рис. 2. Вычисленное напряжение сравнивается с реальным на аккумуляторе, и если оно меньше необходимого, то микроконтроллер включает обмотку возбуждения (ОВ) генератора автомобиля. Чтобы исключить многократные переключения на пороговых значениях напряжений, предусмотрен гистерезис около 0,2 В между включением и выключением ОВ. Обмотка управляется ключом на полевом транзисторе VT1 IRLR2705. Для повышения надёжности устройства и ускорения переключения транзистора VT1 затвор последнего подключается сразу к двум выходам GP4 и GP5 микроконтроллера DD1. Питается микроконтроллер напряжением +5 В от интегрального стабилизатора DA1 L78L05CD. Такое же напряжение используется и в качестве образцового для внутреннего АЦП микроконтроллера. Сток транзистора VT1 подключён к проводу, идущему на зажим Ш, а через диод VD1 – к проводу, идущему на зажим В штатного реле-регулятора (см. схему электрооборудования автомобиля ВАЗ-2109). Потребляемый ток устройства – около 4 мА.

Печатная плата изготовлена из одностороннего фольгированного стеклотекстолита размерами 27×21 мм. Чертёж платы показан на рис. 3, а на рис. 4 – расположение элементов в масштабе 2:1. Все резисторы и неполярные конденсаторы – для поверхностного монтажа типоразмера 0805, С4 – оксидный танталовый типоразмера А или В. К контактным площадкам на плате припаяны выходящие наружу через отверстие провода со стандартной четырёхконтактной колодкой на конце. Собранный регулятор помещён в корпус штатного реле-регулятора автомобиля ВАЗ-2109 старого образца. Корпус был аккуратно вскрыт, и на место старой платы приклеена новая. Датчик температуры LM135Z приклеен к толстой латунной шайбе теплопроводя-щим клеем. Эту шайбу затем фиксируют болтом крепления плюсового провода к выводу АКБ. К ней же припаивают питающий провод устройства, идущий от зажима Б.

Разьём ICSP для программирования не предусмотрен, поэтому микроконтроллер необходимо запрограммировать заранее либо соединить разъём программатора с соответствующими печатными площадками на плате тонкими проводами.

Внешний вид собранного регулятора показан на рис. 5. Его необходимо наладить при температуре +20 °С до установки в корпус. Отключают датчик температуры ВК1 и резистор R1, к затвору транзистора VT1 подключают вольтметр (желательно цифровой). Далее от

регулируемого источника питания подают напряжение +13,8 В на вход стабилизатора DA1 и проверяют наличие напряжения +5±0,1 В на его выходе. На затворе VT1 должен быть высокий логический уровень. Подключают вывод резистора R1. В этот момент высокий логический уровень на затворе VT1 должен смениться на низкий. Подборкой резистора R2 добиваются чёткого появления высокого уровня при напряжении 13,6 В и низкого при 13,8 В. Затем подключают вывод датчика температуры ВК1. При +20 °С порог переключения должен быть 14. 14,2 В. Подключив маломощную лампу на 12 В между стоком транзистора VT1 и плюсом источника питания, убеждаются в правильном переключении транзистора при изменении напряжения питания. На этом налаживание можно считать законченным.

При установке на автомобиль необходимо следить, чтобы провода от регулятора не оказались рядом с высоковольтными, а также защитить контактную колодку от попадания воды и грязи. Желательно применить экранированные провода для цепей питания и датчика температуры.

Этот регулятор напряжения эксплуатируется на автомобиле уже два года, и сбоев замечено не было. Во время лютых сибирских морозов аккумулятор отдавал заметно больший ток стартёру, а в жаркие дни не перезаряжался.

Программу микроконтроллера и чертёж печатной платы в формате Lay можно скачать здесь.

Автор: Н. Овчинников, г. Красноярск

Мнения читателей
  • Владимир / 16.11.2017 – 06:54
    А процессор на унитаз слабо?
  • Дмитрий / 26.07.2016 – 12:49
    Антон, я отъездил зиму с напряжением генератора 15,0В. Минусов не заметил, зато почти дохлый кальциевый АКБ прожил ещё одну зиму без проблем. ЗЫ У меня тогда стоял регулятор ТОРН-67, но в связи с заменой 80-амперного генератора на 120-амперный ТОРН уже не подходит – ищу другую схему.
  • Антон / 22.07.2016 – 10:36
    Всем привет! Ребят, а прошивку никто не переделывал, а то мне кажется, что 15.5v при -30C это жестоко. Генер при такой нагрузке износит ремень очень быстро. Поправьте, если ошибаюсь.
  • Дмитрий / 15.03.2016 – 22:35
    парни такой вопрос, может есть у кого исходники прошивки?? Сообщите
  • Валерий / 03.02.2015 – 15:52
    Собрал РРН заработал сразу, только пришлось немного изменить плату, для удобства настройки. Изменён номинал резистора R3 на 2к так-как ток для датчик был мал. Резистор R1 поставил 27к на 25к навряд-ли кто найдёт а резистор R2 получил в сумме 10к+470 ом, получил порог 13,9 вольта примерно при 20 градусах. Разрабатываю плату что-бы поместился в корпус Я212А11Е.
  • михаил / 16.12.2014 – 14:01
    Очень интересная штука только программы нет
  • Михаил / 02.04.2014 – 07:41
    А питание на датчик температуры (нога1) откуда подается?
  • Сергей / 21.10.2013 – 08:33
    Очень заинтересовал этот регулятор, так как есть проблема зарядки АКБ после прогрева двигателя. Расскажите пожалуйста как программировать DD1-PIC12F675-I/SN поподробней,как для начинающего.
Читайте также  Агп генератора когда срабатывает

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

На первом этапе схема была повторена полностью. В результате настройки и пробной эксплуатации внесены следующие изменения:

  1. К АКБ вынесен не только термодатчик, но и весь регулятор(термодатчик на корпусе регулятора). Как будет изложено далее, это было правильное решение.
  2. Так как не удавалось выставить требуемое напряжение, а срабатывание второго компаратора происходило при 6в, а не при 7, номиналы резисторов в делителе напряжения изменены.

R7 – 1k многооборотный

С учетом изменений, эксплуатация регулятора в период лето-осень показала отличные результаты.

С наступлением зимы, когда регулятор повысил напряжение до 15 и более вольт, у меня постепенно сгорели все светодиоды установленные, вместо штатных ламп подсветки панели приборов и габаритов. Да и лампы в фарах стали часто гореть.

Этап 2. Примерно 2 года эксплуатации.

Внесены следующие изменения:

Второй компаратор. Отключение при 7в не имеет смысла, т.к. при таком напряжении, аккумулятор не может крутить стартер. Для отключения реле при не работающем двигателе, напряжение на R1 подается не с замка зажигания, а с датчика давления масла. Компаратор же используется для ограничения напряжения на уровне 14.8в. Для этого он включен аналогично первому, т.е. выводы 2 и 3 поменял местами, а сигнал на вывод 2 снял с точки соединения R7 и R8. В следующем варианте на вывод 3 подал напряжение с дополнительного делителя, чтобы не зависеть от температуры.

Ток через диоды термодатчика зависит от напряжения, что, в свою очередь изменяет образцовое напряжение на термодатчике. Последовательно с диодом VD1 включил резистор на 300ом, а параллельно конденсаторам включил термостабильный стабилитрон Д818. В результате получил стабильный ток через термодатчик. Пришлось подобрать резистор R9.

Вернул реле-регулятор на штатное место, а термодатчик в отдельном корпусе вывел к АКБ. Это было ошибочное решение. Температура в месте установки АКБ значительно меньше зависит от температуры двигателя, чем в месте установки реле. Детали же самого реле тоже изменяют свои параметры в зависимости от температуры, поэтому уровень напряжения с прогревом двигателя стал изменяться. В результате долгой подстройки R7 на ходу добился приемлемых результатов.

Зимний недозаряд АКБ компенсировал, тем, что ночью в гараже подключал источник тока 100мА.

В результате вышеизложенного получил все преимущества реле, обещанные автором схемы.

Этап 3. Что-то в реле испортилось. В результате многочисленных переделок, на плате появилось столько «соплей», что решил не ремонтировать, а спаять заново. Примерно два года не доходили руки, и использовал штатное реле. Т.к. на втором этапе привык, что, сколько не смотри, с электролитом все в порядке, забыл доливать. Обнаружил, что пластины уже торчат из электролита, долил, но емкость АКБ явно упала.

Этап 4. После моделирования в multisim родилась следующая схема

DDM – датчик давления масла

VCC – замок зажигания

Q2 – после испытания в лабораторных условиях заменен на IRF5210

R6,R9 – многооборотные ( R6 -680ом)

R18 – забыл убрать – обмотка возбуждения

Печатная плата во вложении

Испытания в лабораторных условиях прошли успешно. Сомнение вызывает время закрытия Q2. Заменил R16 на 1к и R17 на 200Ом. Возможно полевик придется убрать – не городить же еще и схему разряда затвора? Может быть, кто-нибудь подскажет решение?

Схема авто напряжение берём под контроль… Многие автолюбители знакомы с ситуацией, когда вскипает электролит летом, а потом надо доливать воду или зимой таскать тяжелый аккумулятор на пятый этаж, чтобы он не замерз. Но есть простой выход из этих ситуаций, достаточно собрать схему термокомпенсированного регулятора напряжения. Он служит для поддержания оптимального зарядного напряжения при любой температуре, и при этом не допускает недозаряда или перезаряда аккумулятора. Я устоновил это устройство и практически забыл про аккумуляторную баттарею, заводится в любой мороз.

Вот схема данного устройства…

для увеличения нажмите на схему

В этой схеме есть своя особенность, она собрана с применением двух порогового компаратора, этим она и отличается от подобных схем. Она при напряжении ниже 7 вольт (холодный пуск), обеспечивает отключение обмотки возбуждения и предотвращает перезаряд при обрыве цепи датчика.

Теперь как подключать данную схему… «+АКБ» (измерительный вход) подключаем непосредственно к плюсу аккумулятора (к клемме), а к боковой стенке аккумулятора — датчик температуры. Этот датчик обязательно надо подключать 2 проводами то есть, минусовой его вывод к массе должен подключаться непосредственно
в самом регуляторе, а не возле аккумулятора, иначе устройство будет работать не правильно.
Напряжение на аккумуляторной батарее, рассчитанное по формуле:

11 = 13,88-0,0405 (t -15), В,
(где t — это температура аккумулятора в градусах °С), выставляется оно подстроечным сопротивлением R7. При замене датчика температуры необходимо повторно провести установку опорного напряжения.
Микросхему DA1 лучше взять типа LM2903 (DIP8), LM393 или использовать их аналоги.

Реле регулятор на генераторе: проверка, ремонт и замена

  • 1. Возможные причины поломки реле регулятора
  • 2. Основные признаки неисправности
  • 3. Как проверить реле регулятор генератора на автомобиле
  • 4. Проверка мультиметром без демонтажа
  • 5. Как проверить реле лампой
  • 6. Ремонт или замена: что выбрать?
  • 7. Как поменять реле регулятор
  • 8.
  • 9. Заключение

Реле‐регулятор устанавливается на автомобили для поддержания стабильного напряжения от генератора. Данный элемент защищает АКБ от перезарядки, продлевая срок службы батареи. Именно поломка реле регулятора напряжения генератора является одной из наиболее распространенных неисправностей бортовой сети автомобиля.

Возможные причины поломки реле регулятора

Современные модели реле имеют сравнительно большой срок службы. Но некоторые факторы способны привести к преждевременной поломке элемента, а именно:

  • Низкое качество самой детали.
  • Возникновения короткого замыкания.
  • Механическое повреждение детали.

Причиной неисправности может также стать попадание воды.

На некоторых моделях генераторов замена электронного реле регулятора потребуется и при износе щеток. В нормальных же условиях ресурс регулятора напряжения превышает 60 000 км.

Основные признаки неисправности

Существует два основных «симптома» поломки реле. Это недозаряд или перезаряд аккумулятора. Также неисправность детали можно определить по тусклому свечению фар либо по изменению их яркости при повышении оборотов двигателя.

При недозаряде машина будет запускаться с большим трудом. Однако проявление этого «симптома» может быть и не связано с генератором. Поэтому в первую очередь следует удостовериться в исправности АКБ.

Если же происходит перезаряд батареи — можно не сомневаться, что проблема кроется именно в поврежденном реле. Существуют и другие возможные причины перезаряда, но они встречаются крайне редко. Из‐за перезаряда может начаться выкипание АКБ. Определить это можно по уменьшению количества электролита в банках и появлению на батарее белого налета.

При возникновении подозрений на перезаряд или недозаряд АКБ следует провести диагностику генератора.

Как проверить реле регулятор генератора на автомобиле

Проверку реле регулятора напряжения генератора можно выполнять как со снятием агрегата, так и без этого. Если есть подозрение на нарушение системы заряда АКБ, диагностику нужно начать с замера напряжения на батарее при работающем двигателе. Показатель свыше 15В говорит о поломке регулятора напряжения. Далее требуется для проверки реле прозвонить управляющий провод, идущий к детали. Если сопротивление окажется больше 10 Ом, регулятор наверняка неисправен.

Проверка мультиметром без демонтажа

Проверить состояние реле можно с помощью мультиметра. При этом демонтаж генератора не выполняется. Перед началом диагностики достаточно очистить клеммы батареи (их окисление может сказаться на работе авто и показаниях измерительного прибора).

Порядок диагностики таков:

  1. Сначала требуется запустить двигатель и дать ему прогреться несколько минут.
  2. Далее необходимо подсоединить щупы мультиметра к клеммам аккумулятора. На приборе при этом выставляется значение в 20В.
  3. После этого измеряется напряжение. Оно должно находиться в пределах 13.2–14В. Такие показания для большинства автомобилей считаются нормальными.
  4. Теперь необходимо увеличить обороты двигателя (до 2-2.5 тысяч). Напряжение должно вырасти примерно на 0.2В.
  5. Если превышает 3 500 оборотов, мультиметр должен показать 14–14.5В, но не более.

Серьезные отклонения в показаниях прибора говорят о наличии поломок реле‐регулятора.

Как проверить реле лампой

На многих современных автомобилях реле объединено с щетками. В этом случае проверить регулятор можно с помощью лампы накаливания. Порядок действий будет следующим:

  1. Чтобы добраться до детали, нужно открутить крепежные болты и снять клеммы. Реле находится в задней части генератора.
  2. Для проверки необходимо подготовить лампочку на 12В с патроном, провода, вольтметр, а также блок питания (не более 20В).
  3. Далее потребуется собрать следующую схему.

При уменьшении напряжения лампа должна загореться снова.

Данный способ проверки можно использовать и для некоторых моделей регуляторов, не совмещенных с щетками.

Ремонт или замена: что выбрать?

С ремонтом регулятора напряжения не стоит затягивать. Стоимость новых реле для большинства моделей авто не превышает 2000-2500 рублей, поэтому пытаться восстанавливать деталь в большинстве случаев попросту невыгодно. Также существуют интегральные регуляторы, которые вообще не подлежат разборке. Такие детали приходится менять в 100% случаев.

Как поменять реле регулятор

  1. Выполнить демонтаж генератора. Чтобы это сделать, требуется отключить минусовую клемму.
  2. Отщелкиваются фиксаторы.
  3. Крышка отсоединяется от корпуса генератора.
  4. Нужно отключить разъем диодного моста.
  5. Откручиваются гайки и снимаются втулки контактной группы.
  6. Остаётся открутить несколько винтов, удерживающих регулятор.

Снятое реле ремонтируется или меняется на новое. Сборка генератора производится в обратной последовательности.

Порядок действий может несколько различаться в зависимости от модели автомобиля и конструкции генератора.

Заключение

Чтобы реле и генератор в целом прослужили максимально долго, не следует допускать чрезмерного загрязнения узла. Также желательно время от времени замерять напряжение, поступающее на АКБ. А при мойке автомобиля нельзя допускать попадания воды в систему заряда.

Выход из строя реле-регулятора может привести к возникновению более серьезных неисправностей (вплоть до поломки аккумулятора). Так что пренебрегать ремонтом в данном случае не стоит. Попытаться восстановить генератор можно и самостоятельно, но если есть сомнения в собственных силах, лучше обратиться за помощью в автосервис. Это позволит сократить затраты времени и избежать значительных материальных трат.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: