Басов прохоров квантовый генератор

4. 3. 027 Мазер лазер Басова, Прохорова и Таунса

В 1964 г. два русских профессора — А.М. Прохоров, Н.Г. Басов и американский Ч. Таунс стали лауреатами Нобелевской премии по физике — «за фундаментальные работы в области квантовой электроники, приведшие к созданию генераторов и усилителей на основе принципа мазера — лазера».

Директор Института общей физики АН СССР, академик-секретарь Отделения общей физики и астрономии АН СССР (РАН), создатель школы физиков — Александр Михайлович Прохоров (1916—2002) занимался исследованиями в области радиофизики, физики ускорителей, радиоспектроскопии, квантовой электроники и ее приложений, линейной оптики.

Директор Физического института АН СССР, член Президиума АН СССР (РАН) — Николай Геннадьевич Басов (1922—2001) известен фундаментальными работами в области генераторов и усилителей, а также использования лазерной техники в термоядерном синтезе.

Прохоров и Басов — почетные члены многих зарубежных академий, лауреаты Ленинской и Государственной премий, пятикратные кавалеры орденов Ленина и других отечественных и зарубежных наград, дважды Герои Социалистического Труда.

Многие выпускники школ, успешно сдавшие ЕГЭ, при поступлении в вузы на вопрос «Кто изобрел лазеры?» отвечают: «Лазер». Про мазеры после этого у них не спрашивают, т.к. английский сегодняшние школяры знают лучше физики и уж тут-то точно скажут: «Мать». А ведь квантовый генератор — из разряда изобретений, что и космическая ракета или радио.

Между тремя шедеврами русской культуры: Шуховской башней, романом «Гиперболоид инженера Гарина» и «мазером — лазером» — прослеживается прямая связь.

Гиперболоид В.Г. Шухова (башня на Шабаловке) настолько потряс воображение А.Н. Толстого, что герой его романа назвал свое изобретение также «гиперболоидом». А за ним и весь читающий народ дал квантовому генератору такое же имя — «гиперболоид Гарина». Да и научное сообщество было с ним солидарно: «Игольчатые пучки атомных радиостанций представляют собой своеобразную реализацию идей «гиперболоида инженера Гарина» (академик Л.А. Арцимович).

Мазер — это квантовый генератор, излучающий когерентные (согласованные) радиоволны, аббревиатура фразы «microwave amplification by stimulated emission of radiation» («усиление микроволн с помощью вынужденного излучения»), предложенной в 1954 г. американцем Ч. Таунсом.

Лазер, соответственно, — «light amplification by stimulated emission of radiation», означающей «усиление света в результате вынужденного излучения».

В основе работы лазера лежит принцип индуцированного излучения, изучением которого в начале XX в. занимался А. Эйнштейн. Высказав гипотезу о том, что энергия света состоит из квантов, которые испускаются атомами и атомными системами при их переходах из одного энергетического состояния в другое, ученый показал, что можно согласовать вспышки излучения отдельных атомов, воздействуя на них внешним электромагнитным излучением, которое может сопровождаться при этом ослепительно яркой вспышкой монохроматического (т.е. одной длины волны) света.

В 1920 г. немецкий физик О. Штерн ввел в экспериментальную физику метод молекулярных пучков. Тогда же были разработаны теоретические представления о процессах излучения и поглощения света.

В 1939 г. советский ученый В.А. Фабрикант развил понятие вынужденного излучения, чем заложил фундамент для создания лазера.

Во время Второй мировой войны в связи с проблемами радиолокации развилась техника сверхвысоких радиочастот.

Объединение научных идей с широким использованием волн сверхвысокочастотного диапазона привело к построению теории излучения и поглощения света, созданию первого лазера и к основанию квантовой электроники как новой физической науки.

В середине 1950-х гг. профессор А.М. Прохоров и его ученик Н.Г. Басов приступили к исследованию молекулярного генератора на пучках аммиака. Ученым впервые удалось создать квантовый генератор, работающий на энергетических переходах в радиодиапазоне в молекулярных пучках. Им стал аммиачный мазер. К мазеру «в довесок» была создана и теория усилителя радиоизлучения. Так родилась квантовая электроника.

Впоследствии были созданы и другие молекулярные генераторы, например мазер на пучке молекул водорода. После завершения работ по мазерам возник вопрос о создании лазеров оптического диапазона.

Следующим важным шагом в развитии квантовой электроники стал предложенный в 1955 г. Басовым и Прохоровым метод трех уровней, позволивший использовать для этой цели оптическую накачку.

На этой основе в 1957—1958 гг. Г.Э. Сковилом и др. были созданы квантовые усилители на парамагнитных кристаллах (на рубине), работавшие в радиодиапазоне — первый т.н. твердотельный лазер.

Затем были созданы газовые лазеры на смеси изотопов гелия и неона, на углекислом газе, аргоновые, кадмиевые, эксимерные, полупроводниковые, инжекционные, на молекулах органических красителей и т.д.

Под «накачкой» понимают пропускание через лазер энергии извне. Смысл лазерного луча в том, что этот свет обладает некоей согласованностью (когерентностью), позволяющей энергию «сжать в точку» (т.н. талию луча) несравненно сильнее, нежели в луче от обычного источника света.

Кроме того лазер может излучать свет гораздо более короткими импульсами, чем обычные источники света. В лазерном луче при этом достигается колоссальная плотность энергии, соизмеримая с взрывом авиационной бомбы. Давление света, сконцентрированного на малой площадке, достигает миллиона атмосфер. Лазерным лучом можно разрезать металлический лист из самого твердого и тугоплавкого металла.

В 1964 г Прохорову, Басову и Ч. Таунсу, занимавшемуся этой же проблемой независимо от советских ученых, была присуждена Нобелевская премия по физике.

Вскоре после этого астрономы обнаружили, что некоторые из далеких галактик работают как исполинские мазеры, т.е. в лабораторных условиях Земли были воссозданы условия для генерации, которые возникают в огромных газовых облаках, размером в миллиарды километров, где источником накачки служит космическое излучение.

О применении квантовой электроники, и в частности, лазеров, можно говорить долго.

Радиоастрономия; космическая связь (исследование поверхности Луны, навигационное оборудование на ИСЗ, космических кораблях и пр.); медицина (хирургия, офтальмология и др.); технология (сварка, резка и т.д.); метрология (квантовые стандарты частоты и времени, лазерные дальномеры, системы дистанционного химического анализа, лазерной локации); измерительная техника (оптическая локации, сверхточные измерения расстояний, линейных и угловых скоростей, ускорений и т.д.).

Создание и управление высокотемпературной плазмой; лазерная спектроскопия, фотохимия, фитобиология, лазерная очистка, лазерное разделение изотопов; создание систем оптической связи и обработки информации.

Осуществление идеи голографии и голографических приборов; лазерные методы контроля состояния атмосферы, качества изделий; системы лазерной связи (наземные, подводные, космические).

Очистка зданий от поверхностных загрязнений, резка мрамора, гранита, раскрой тканей, кожи и других материалов.

Для осуществления управляемой термоядерной реакции…

Лазеры с каждым днем все более востребованы в науке и народном хозяйстве России, так же как все более актуальными становятся слова академика А.М. Прохорова, сказанные им в одном из последних своих интервью.

«— Как вы думаете, недавняя Нобелевская премия Ж.И. Алферову поможет изменить ситуацию с наукой в стране?

— Не знаю. Странные какие-то статьи появляются, что не надо быть сверхдержавой. А какой надо быть державой? Развивающейся страной, что ли, быть? Или как Люксембург? Здесь полное непонимание наверху. Ну, во-первых, о том, как заниматься наукой, в основном говорят люди, которые никогда не занимались практической наукой и не сделали ничего существенного. Некоторые выступают, что надо более узко подходить, только прикладными вопросами заниматься. Но как человек может, занимаясь только прикладными вещами, развивать в дальнейшем науку и технологии, новые направления?» (http://vivovoco.ibmh.msk.su/)

Как всегда, любое научное открытие имеет и отрицательную сторону медали: нет-нет, да и появляются сообщения о применении злостными хулиганами лазерных игрушек с целью ослепления пилотов гражданских самолётов при взлёте и посадке, что ставит под угрозу жизни сотен людей.

Это еще цветочки, в руках тех же террористов это уже ягодки.
Спасибо, Анатолий, за отзыв!
С Праздником!
Здоровья и бодрости!

Портал Проза.ру предоставляет авторам возможность свободной публикации своих литературных произведений в сети Интернет на основании пользовательского договора. Все авторские права на произведения принадлежат авторам и охраняются законом. Перепечатка произведений возможна только с согласия его автора, к которому вы можете обратиться на его авторской странице. Ответственность за тексты произведений авторы несут самостоятельно на основании правил публикации и законодательства Российской Федерации. Данные пользователей обрабатываются на основании Политики обработки персональных данных. Вы также можете посмотреть более подробную информацию о портале и связаться с администрацией.

Ежедневная аудитория портала Проза.ру – порядка 100 тысяч посетителей, которые в общей сумме просматривают более полумиллиона страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

© Все права принадлежат авторам, 2000-2021. Портал работает под эгидой Российского союза писателей. 18+

МАЗЕР – ЛАЗЕР БАСОВА, ПРОХОРОВА И ТАУНСА

В 1964 г. два русских профессора – А.М. Прохоров, Н.Г. Басов и американский профессор Ч. Таунс стали лауреатами Нобелевской премии по физике – «за фундаментальные работы в области квантовой электроники, приведшие к созданию генераторов и усилителей на основе принципа мазера – лазера». Директор Института общей физики АН СССР, академик-секретарь отделения общей физики и астрономии АН СССР (РАН), создатель школы физиков, Александр Михайлович Прохоров (1916–2002) занимался исследованиями в области радиофизики, физики ускорителей, радиоспектроскопии, квантовой электроники и ее приложений, линейной оптики. Директор Физического института АН СССР, член президиума АН СССР (РАН) Николай Геннадьевич Басов (1922–2001) известен фундаментальными работами в области генераторов и усилителей, а также использования лазерной техники в термоядерном синтезе. Прохоров и Басов – почетные члены многих зарубежных академий, лауреаты Ленинской и Государственной премий, пятикратные кавалеры орденов Ленина и других отечественных и зарубежных наград, дважды Герои Социалистического Труда.

Многие выпускники школ, успешно сдавшие ЕГЭ, при поступлении в вузы на вопрос «Кто изобрел лазеры?» отвечают: «Лазер». Про мазеры после этого у них не спрашивают. А ведь квантовый генератор – из разряда изобретений, что и космическая ракета или радио.

Н.Г. Басов, Ч. Таунс и А.М. Прохоров

Между тремя шедеврами русской культуры: Шуховской башней, романом «Гиперболоид инженера Гарина» и «мазером – лазером» прослеживается прямая связь. Гиперболоид В.Г. Шухова (башня на Шаболовке) настолько потряс воображение А.Н. Толстого, что герой его романа назвал свое изобретение также «гиперболоидом». А за ним и весь читающий народ дал квантовому генератору такое же имя – «гиперболоид Гарина». Да и научное сообщество было с ним солидарно: «Игольчатые пучки атомных радиостанций представляют собой своеобразную реализацию идей “гиперболоида инженера Гарина”» (академик Л.А. Арцимович).

Мазер – это квантовый генератор, излучающий когерентные (согласованные) радиоволны, аббревиатура фразы «microwave amplification by stimulated emission of radiation» («усиление микроволн с помощью вынужденного излучения»), предложенной в 1954 г. американцем Ч. Таунсом. Лазер соответственно – «light amplification by stimulated emission of radiation», означающей «усиление света в результате вынужденного излучения».

В основе работы лазера лежит принцип индуцированного излучения, изучением которого в начале XX в. занимался А. Эйнштейн. Высказав гипотезу о том, что энергия света состоит из квантов, которые испускаются атомами и атомными системами при их переходах из одного энергетического состояния в другое, ученый показал, что можно согласовать вспышки излучения отдельных атомов, воздействуя на них внешним электромагнитным излучением, которое может сопровождаться при этом ослепительно яркой вспышкой монохроматического (то есть одной длины волны) света.

В 1920 г. немецкий физик О. Штерн ввел в экспериментальную физику метод молекулярных пучков. Тогда же были разработаны теоретические представления о процессах излучения и поглощения света.

В 1939 г. советский ученый В.А. Фабрикант развил понятие вынужденного излучения, чем заложил фундамент для создания лазера. Во время Второй мировой войны в связи с проблемами радиолокации развилась техника сверхвысоких радиочастот. Объединение научных идей с широким использованием волн сверхвысокочастотного диапазона привело к построению теории излучения и поглощения света, созданию первого лазера и к основанию квантовой электроники как новой физической науки.

Читайте также  Бензиновый генератор powertech pt6500we

В середине 1950-х гг. профессор А.М. Прохоров и его ученик Н.Г. Басов приступили к исследованию молекулярного генератора на пучках аммиака. Ученым впервые удалось создать квантовый генератор, работающий на энергетических переходах в радиодиапазоне в молекулярных пучках. Им стал аммиачный мазер. К мазеру «в довесок» была создана и теория усилителя радиоизлучения. Так родилась квантовая электроника.

Впоследствии были созданы и другие молекулярные генераторы, например мазер на пучке молекул водорода. После завершения работ по мазерам возник вопрос о создании лазеров оптического диапазона. Следующим важным шагом в развитии квантовой электроники стал предложенный в 1955 г. Басовым и Прохоровым метод трех уровней, позволивший использовать для этой цели оптическую накачку. На этой основе в 1957–1958 гг. Г.Э. Сковилом и др. были созданы квантовые усилители на парамагнитных кристаллах (на рубине), работавшие в радиодиапазоне, первый т. н. твердотельный лазер. Затем были созданы газовые лазеры на смеси изотопов гелия и неона, на углекислом газе, аргоновые, кадмиевые, эксимерные, полупроводниковые, инжекционные, на молекулах органических красителей и т. д.

Под накачкой понимают пропускание через лазер энергии извне. Смысл лазерного луча в том, что этот свет обладает некоей согласованностью (когерентностью), позволяющей энергию «сжать в точку» (т. н. талию луча) несравненно сильнее, нежели в луче от обычного источника света. Кроме того, лазер может излучать свет гораздо более короткими импульсами, чем обычные источники света. В лазерном луче при этом достигается колоссальная плотность энергии, соизмеримая с взрывом авиационной бомбы. Давление света, сконцентрированного на малой площадке, достигает миллиона атмосфер. Лазерным лучом можно разрезать металлический лист из самого твердого и тугоплавкого металла.

В 1964 г Прохорову, Басову и Ч. Таунсу, занимавшемуся этой же проблемой независимо от советских ученых, была присуждена Нобелевская премия по физике. Вскоре после этого астрономы обнаружили, что некоторые из далеких галактик работают как исполинские мазеры, то есть в лабораторных условиях Земли были воссозданы условия для генераций, которые возникают в огромных газовых облаках размером в миллиарды километров, где источником накачки служит космическое излучение.

О применении квантовой электроники, и, в частности, лазеров, можно говорить долго.

Радиоастрономия; космическая связь (исследование поверхности Луны, навигационное оборудование на ИСЗ, космических кораблях и пр.); медицина (хирургия, офтальмология и др.); технология (сварка, резка и т. д.); метрология (квантовые стандарты частоты и времени, лазерные дальномеры, системы дистанционного химического анализа, лазерной локации); измерительная техника (оптическая локации, сверхточные измерения расстояний, линейных и угловых скоростей, ускорений и т. д.).

Создание и управление высокотемпературной плазмой; лазерная спектроскопия, фотохимия, фитобиология, лазерная очистка, лазерное разделение изотопов; создание систем оптической связи и обработки информации.

Осуществление идеи голографии и голографических приборов; лазерные методы контроля состояния атмосферы, качества изделий; системы лазерной связи (наземные, подводные, космические).

Очистка зданий от поверхностных загрязнений, резка мрамора, гранита, раскрой тканей, кожи и других материалов.

Для осуществления управляемой термоядерной реакции…

Лазеры с каждым днем все более востребованы в науке и народном хозяйстве России, так же как все более актуальными становятся слова академика А.М. Прохорова, сказанные им в одном из последних своих интервью:

«– Как вы думаете, недавняя Нобелевская премия Ж.И. Алферову поможет изменить ситуацию с наукой в стране?

– Не знаю. Странные какие-то статьи появляются, что не надо быть сверхдержавой. А какой надо быть державой? Развивающейся страной, что ли, быть? Или как Люксембург? Здесь полное непонимание наверху. Ну, во-первых, о том, как заниматься наукой, в основном говорят люди, которые никогда не занимались практической наукой и не сделали ничего существенного. Некоторые выступают, что надо более узко подходить, только прикладными вопросами заниматься. Но как человек может, занимаясь только прикладными вещами, развивать в дальнейшем науку и технологии, новые направления?»

История одного из самых важных изобретений XX века – лазера

История одного из самых важных изобретений XX века – лазера

Но мысль исследовать газовые разряды ради наблюдения вынужденного излучения в те времена никому не пришла в голову — ведь ученые даже не подозревали о его существовании.

А в 1913 году Альберт Эйнштейн высказал гипотезу, что в недрах звезд излучение может генерироваться под действием вынуждающих фотонов. В классической статье «Квантовая теория излучения», опубликованной в 1917 году, Эйнштейн не только вывел существование такого излучения из общих принципов квантовой механики и термодинамики, но и доказал, что оно когерентно вынуждающему излучению (то есть имеет одинаковое направление, длину волны, фазу и поляризацию). А спустя десять лет Поль Дирак строго обосновал и обобщил эти выводы.

Альберт Эйнштейн

Первые эксперименты

Работы теоретиков не остались незамеченными. В 1928 году Рудольф Ладенбург, директор отдела атомной физики Института физической химии и электрохимии Общества кайзера Вильгельма, и его ученик Ганс Копферманн экспериментально наблюдали инверсию населенностей, причем именно в опытах с неоновыми трубками. Но вынужденное излучение было очень слабым, и различить его на фоне спонтанного излучения было сложно. До лазера оставался лишь шаг: чтобы усилить вынужденное излучение, в среду необходимо ввести положительную обратную связь, то есть поместить ее в резонатор. Но для этой идеи время еще не настало.

Мало кто занимался усилением оптических сигналов с помощью вынужденного излучения и в 1930-е годы. Наиболее серьезной работой по этой теме была докторская диссертация москвича Валентина Фабриканта, опубликованная в 1940 году. В 1951 году В.А. Фабрикант, Ф.А. Бутаева и М.М. Вудинский подали заявку на изобретение нового метода усиления электромагнитного излучения, основанного на использовании среды с инверсией населенностей. К сожалению, эта работа была опубликована лишь через 8 лет и мало кем замечена, а попытки построить действующий оптический усилитель оказались бесплодными — опять-таки из-за отсутствия резонатора. В 1957 году Фабрикант и Бутаева даже наблюдали квантовое усиление световых волн в опытах с пропусканием электрических разрядов через ртутные пары, однако это так и осталось их личным достижением.

Лазер

Путь к созданию лазера был найден не оптиками, а радиофизиками, которые издавна умели строить генераторы и усилители электромагнитных колебаний, использующие резонаторы и обратную связь. Им-то и было суждено сконструировать первые квантовые генераторы когерентного излучения, только не светового, а микроволнового.

Мазеры

Возможность создания такого генератора первым осознал профессор физики Колумбийского университета Чарльз Таунс. Эта мысль осенила его весной 1951 года во время прогулки по Франклин-скверу в центре Вашингтона. (Кстати, этому небольшому парку самой судьбой было предназначено войти в историю физической оптики. Именно там 3 июня 1880 года изобретатель телефона Александр Белл впервые испытал устройство, которое он считал своим главным изобретением. Прибор, который Белл назвал фотофоном, передавал звук не по проводам, а по световому лучу. Сегодня белловский фотофон считают предтечей опто-волоконных систем связи.)

Таунс понял, что можно построить микроволновой генератор с помощью пучка молекул, имеющих несколько уровней энергии. Для этого их нужно разделить электростатическими полями и загнать пучок возбужденных молекул в металлическую полость, где они перейдут на нижний уровень, излучая электромагнитные волны. Чтобы эта полость работала как резонатор, ее линейные размеры должны равняться длине излучаемых волн. Таунс поделился этой мыслью с аспирантом Джеймсом Гордоном и научным сотрудником Гербертом Цайгером. На роль среды они избрали аммиак, молекулы которого при переходе с возбужденного колебательного уровня на основной испускают волны длиной 12,6 мм. Изготовить высококачественный объемный резонатор такой величины было не слишком просто, но все же возможно. В апреле 1954-го Таунс и Гордон (Цайгер тогда уже ушел из университета) запустили первый в мире микроволновой квантовый генератор. Этот прибор Таунс назвал мазером (MASER — Microwave Amplification by Stimulated Emission of Radiation).

Чарльз Таунс Хард

В Лаборатории колебаний Физического института АН СССР этой же темой занимались старший научный сотрудник Александр Прохоров и его аспирант Николай Басов. В мае 1952 года на Общесоюзной конференции по радиоспектроскопии они сделали доклад о возможности создания квантового усилителя СВЧ-излучения, работающего на пучке молекул все того же аммиака. В 1954 году, вскоре после выхода работы Таунса, Гордона и Цайгера, Прохоров и уже «остепенившийся» Басов опубликовали статью, где были приведены теоретические обоснования работы такого прибора. В 1964 году Таунс, Басов и Прохоров за эти исследования были удостоены Нобелевской премии.

От микроволн к свету

Не будет преувеличением сказать, что в середине 1950-х годов призрак оптического (в отличие от микроволнового) квантового генератора маячил в головах многих физиков — слишком многих, чтобы рассказать обо всех. Фактически не была решена лишь задача усиления вынужденного излучения с помощью положительной обратной связи. Поскольку длины световых волн измеряют десятыми долями микрона, изготовление объемного резонатора таких размеров было делом нереальным. Вероятно, возможность генерации света с помощью макроскопических открытых зеркальных резонаторов первым осознал американский физик Роберт Дике, который в мае 1956 года оформил эту идею в патентной заявке. В сентябре 1957 года Таунс набросал в записной книжке план создания такого генератора и назвал его оптическим мазером. Через год Таунс со своим старым другом и шурином Артуром Шавловым и независимо от них Прохоров выступили со статьями, содержащими теоретические обоснования этого метода генерации когерентного света.

Сам термин «лазер» возник даже раньше. Эту английскую аббревиатуру, Light Amplification by Stimulated Emission of Radiation (в дословном переводе «усиление света с помощью стимулированного испускания излучения», хотя лазерами все же принято называть не усилители, а генераторы излучения, замена слова amplification на generation дает непроизносимое звукосочетание lgser), придумал аспирант Колумбийского университета Гордон Гулд, который совершенно самостоятельно провел детальный анализ методов получения стимулированного излучения оптического диапазона. Поздней осенью 1957 года это слово появилось на страницах блокнота, где он записывал свои размышления и вычисления. В то время Гулд ничего не публиковал и поэтому не получил признания, которое, бесспорно, заслужил. Правда, в 1970—1980-х он добился утверждения своих патентных заявок и наконец-то стал купаться если не в славе, то в долларах.

Лазеры

Лазеры

Первый работающий лазер вышел из рук сотрудника корпорации Hughes Aircraft Теодора Меймана, который в качестве активной среды выбрал рубин. Этот минерал представляет собой оксид алюминия с небольшой примесью хрома, который и придает ему красный цвет (чистый оксид алюминия бесцветен). Мейман понял, что разделенные большими промежутками атомы хрома могут «светить» не хуже атомов газа. Для получения оптического резонанса он напылил тонкий слой серебра на полированные параллельные торцы цилиндрика из синтетического рубина. Цилиндр по специальному заказу изготовила фирма Union Carbide, на что ей понадобилось пять месяцев. Мейман поместил рубиновый столбик в спиральную трубку, дающую яркие световые вспышки. Шестнадцатого мая 1960 года первый в мире лазер выдал первый луч. А в декабре того же года в Лабораториях Белла заработал гелий-неоновый лазер (на смеси гелия и неона), созданный Али Джаваном, Уильямом Беннеттом и Дональдом Хэрриотом. По любопытному совпадению произошло это ровно через 50 лет после того, как Клод поразил воображение посетителей Парижской автомобильной выставки своими светящимися трубками. Лазер Джавана и его коллег работал в инфракрасном диапазоне, но через два года Уайт и Ригден заставили гелий-неоновый лазер излучать красный цвет.

Научная ценность и практическая польза лазеров были настолько очевидны, что ими сразу занялись тысячи ученых и инженеров из разных стран. В 1961 году заработал первый лазер на неодимовом стекле, в течение пяти лет были разработаны полупроводниковые лазерные диоды, лазеры на органических красителях, химические лазеры, лазеры на двуокиси углерода. В 1963 году Жорес Алферов и Герберт Кремер независимо друг от друга разработали теорию полупроводниковых гетероструктур, на основе которых позднее были созданы многие лазеры (за эту работу они 6 лет назад получили Нобелевскую премию). К настоящему времени трудно найти такую область науки и техники, где бы не применялись лазеры. Даже простое перечисление различных модификаций лазеров занимает несколько страниц печатного текста. Это, безусловно, одно из важнейших изобретений XX века навсегда изменило нашу жизнь.

Читайте также  Съемник генератора для suzuki

«Терра» против «Челленджера»

10 октября 1984 года американский космический корабль «Челленджер», выполняя миссию STS-41-G (STS-17), прошёл над секретным советским полигоном Сары-Шаган. Позднее в прессе начали циркулировать слухи, будто бы в тот день там проводились испытания оружия на «новых физических принципах», а корабль использовали в качестве «мишени», что повлияло на работоспособность бортового оборудования. Похожие утверждения можно встретить в исторической литературе и сегодня, но можно ли им верить?

Лазерный ответ

8 марта 1983 года президент Рональд Рейган, выступая перед Национальной ассоциацией евангелистов США во Флориде, назвал Советский Союз «империей зла» (Evil Empire) и призвал бороться с ним до полной победы Запада, невзирая на трудности и потери. 23 марта он обратился к нации с рассказом о своей Стратегической оборонной инициативе (Strategic Defense Initiative, SDI, СОИ), которую вскоре прозвали «планом звёздных войн», и которая была призвана обесценить значение советского ракетно-ядерного арсенала за счёт орбитальной эшелонированной системы перехвата.

После столь вызывающих шагов Рейгана стало ясно, что «холодная» война между сверхдержавами входит в новую фазу, которая потребует колоссальных расходов на создание высокотехнологичных ударных и оборонительных средств, в том числе космического базирования. Чрезвычайный и Полномочный посол Георгий Маркович Корниенко вспоминал:

«Как вскоре стало известно, в соответствии с принятым Советом национальной безопасности США решением изменение советской внутренней системы было признано приоритетной практической целью американской политики, а одним из главных средств достижения этой цели должно было стать экономическое давление, которое ставило бы Кремль перед трудным выбором распределения средств между военным и гражданским секторами экономики. <…>

При этом американские руководители прямо заявляли, что осуществление задуманной ими программы будет для США равноценно восстановлению того господствующего положения в мире, которое они занимали, обладая атомной монополией, а это будет означать «изменение хода человеческой истории». <…>

В связи с намеченным на конец 1983 года началом размещения в Европе американских ракет средней дальности и для нейтрализации противодействующих этому сил в западноевропейских странах к осени стали заметно наращиваться и другие усилия Вашингтона, направленные на то, чтобы опорочить не только советскую позицию в тех или иных конкретных вопросах, но и Советский Союз как таковой.

Все эти враждебные в отношении СССР заявления и действия американского руководства, естественно, вызывали ответную, не менее резкую реакцию, что в целом привело к серьёзному накалу в советско-американских отношениях».

​Президент Рональд Рейган выступает перед Национальной ассоциацией евангелистов США; 8 марта 1983 года. National Archives and Records Administration archives.gov - «Терра» против «Челленджера» | Warspot.ruПрезидент Рональд Рейган выступает перед Национальной ассоциацией евангелистов США; 8 марта 1983 года. National Archives and Records Administration
archives.gov
​Карикатура из советского сатирического журнала «Крокодил» с реакцией на мартовские заявления Рональда Рейгана; июнь 1983 года - «Терра» против «Челленджера» | Warspot.ruКарикатура из советского сатирического журнала «Крокодил» с реакцией на мартовские заявления Рональда Рейгана; июнь 1983 года

В этих условиях политическое и военное руководство СССР выбрало курс на сохранение стратегического паритета, что сказалось и на развитии космонавтики: ответом на американскую программу «Спейс Шаттл» (Space Shuttle) должен был стать многоразовый космический корабль «Буран», а на орбитальную противоракетную оборону — создание средств уничтожения вражеских космических аппаратов.

Нужно помнить, что в тот период ещё действовал Договор об ограничении систем ПРО от 26 мая 1972 года, и администрация Рейгана не собиралась отказываться от него. Поэтому в ход пошла уловка: поскольку в тексте не упоминалось оружие на «новых физических принципах», то именно его собирались проектировать при реализации СОИ. Речь, прежде всего, шла о боевых лазерах, которые считались наиболее перспективным направлением в борьбе с вражескими баллистическими ракетами. Однако СССР мог ответить и на эту инициативу, ведь, помимо работ над классической системой ПРО, советские учёные десятилетиями вели исследования с целью повышения эффективности лазерных установок.

В 50-е годы в СССР и США были сформулированы теоретические предпосылки и построены прототипы радиочастотных квантовых генераторов — мазеров (от Microwave Amplification by Stimulated Emission of Radiation). На основе этих исследований появились соображения о возможности осуществления генерации в оптическом диапазоне с помощью лазера (от Light Amplification by Stimulated Emission of Radiation), что привело к лавинообразному росту публикаций по данной тематике и появлению экспериментальных устройств. 16 мая 1960 года американский инженер Теодор Мейман запустил первый действующий лазер с кристаллом искусственного рубина в лаборатории Hughes Electric Corporation. Его успех наложился на ожидания, сформировавшиеся под влиянием футурологических и фантастических произведений, в которых с конца XIX века обсуждались варианты применения «тепловых лучей» в качестве оружия, поэтому направление разработок почти сразу сдвинулось в сторону военного заказа.

​Первый рабочий лазер, сконструированный Теодором Мейманом; 1960 год. HRL Laboratories, LLC ethw.org - «Терра» против «Челленджера» | Warspot.ruПервый рабочий лазер, сконструированный Теодором Мейманом; 1960 год. HRL Laboratories, LLC
ethw.org

В Советском Союзе главным научным центром, где велись «пионерские» исследования по квантовым генераторам, стал Физический институт имени П.Н. Лебедева Академии наук (ФИАН). В группах, руководимых Александром Михайловичем Прохоровым и Николаем Геннадьевичем Басовым, занимались, прежде всего, задачей увеличения мощности лазерного излучения и поиском новых типов лазеров.

В начале 1963 года первый заместитель министра обороны маршал Андрей Антонович Гречко обратился к академику Мстиславу Всеволодовичу Келдышу с просьбой оценить возможность военного применения лазерных установок. Тот запросил мнения профильных специалистов ФИАНа, в том числе Николая Басова. В подготовленном отчёте утверждалось, что мощные лазеры могут быть использованы в качестве локаторов для сопровождения и распознавания целей, а также в будущем как оружие для их поражения.

В то же самое время сотрудники Опытно-конструкторского бюро №30 (ОКБ-30, с марта 1966 года — ОКБ «Вымпел») Государственного комитета по радиоэлектронике, которое специализировалось на проектировании комплексов для ПРО, искали способы повысить точность определения координат цели, летящей на большой скорости из космического пространства: до единиц угловых секунд по углу и 30 м по дальности. Теоретическими вопросами занималась группа под руководством Георгия Тартаковского, экспериментальными — отдел №56, который возглавлял Олег Ушаков. Начальником лазерной лаборатории отдела был назначен Николай Устинов — сын генерал-полковника Дмитрия Фёдоровича Устинова, члена ЦК КПСС и одного из руководителей военно-промышленного комплекса страны. Понятно, что участие в практической работе влиятельного представителя советской элиты способствовало быстрому развитию выбранного им научного направления.

Наибольший интерес у исследователей вызывали лазеры с модулированной «добротностью», генерирующие короткие (наносекундной длительности) и очень мощные импульсы. По ним ОКБ-30 кооперировалось с группой Басова в ФИАНе, которая определяла общую «идеологию» проекта, и в 1963 году Военно-промышленной комиссии были представлены предложения по экспериментальному локатору ЛЭ-1 на основе рубинового лазера со средней мощностью излучения один киловатт при импульсной мощности в десятки мегаватт. Локатор должен был осуществлять за короткое время поиск целей в «поле ошибок» обычных радиолокаторов.

Авторы ЛЭ-1 в начальный период были полны оптимизма относительно перспектив проекта, однако реальность быстро внесла свои коррективы: средняя мощность одного лазера на рубине вместо ожидаемого киловатта составила не более 10 Вт. Опыты, проведённые группой Басова, показали, что наращивание мощности путём последовательного усиления сигнала в каскаде возможно лишь до определённого уровня, после которого начиналось разрушение кристаллов. Возникла и проблема термооптического искажения излучения. Для преодоления этих трудностей, пришлось установить в локаторе не один, а 196 лазеров, которые работали поочередно с частотой 10 Гц и энергией импульса 1 Дж; общая средняя мощность излучения передатчика локатора составила около 2 КВт. В приёмном устройстве использовалась матрица из такого же количества фотоэлектронных умножителей. Задачу выявления цели усложняли погрешности, связанные с оптико-механическими переключателями локатора и крупногабаритными подвижными системами телескопа, а также искажения, вносимые атмосферой.

Взял молоток и разбил все приборы

Взял молоток и разбил все приборы

В ыдающийся российский физик Александр Прохоров родился в семье, как любили писать в советских биографиях, «профессиональных революционеров» 11 июля 1916 года в городе Атертон, в Австралии, куда эмигрировали его родители.

Его отец Михаил Иванович Прохоров в 1902 году вступил в РСДРП и с того времени вел активную подпольную работу на Украине, в Саратовской губернии, в Оренбурге, позже в Ташкенте. Первый раз был арестован в Оренбурге в 1906 году и освобожден до суда. В 1911-м он был выслан на вечное поселение в Енисейскую губернию.

Когда Михаила Ивановича сослали в Сибирь, его жена Мария Ивановна (они поженились в 1905 году) с помощью товарищей-подпольщиков достала для мужа паспорт на чужое имя и отправилась к нему в Енисейскую губернию. В 1912 году Михаил Иванович с женой бегут из ссылки на Дальний Восток, а оттуда — в Австралию, где они обосновались в русской колонии в штате Квинсленд.

Прохоровы неплохо обустроились, обзавелись хозяйством, детьми (помимо родившегося в 1916 году Саши в семье было трое дочерей — Клавдия, Валентина и Евгения). Однако в 1923 году семейство решило вернуться на родину, где произошла революция, за которую боролись старшие Прохоровы. Сначала они обосновались в Оренбурге, родном городе Марии Ивановны, но тамошний климат оказался слишком суровым для детей, выросших в Австралии. Поэтому семья переехала в Ташкент.

Впрочем, и там Прохоровы задержались ненадолго. В 1930 году семья уже в Ленинграде. После окончания семилетки Прохоров поступает на рабфак. С 1934 года он — студент физфака ЛГУ. В 1939 году выпускнику Прохорову пришлось делать выбор: его одновременно приглашают работать ассистентом на физфаке в Ленинграде и ехать в Москву, аспирантом в Физический институт Академии наук, знаменитый ФИАН. Прохоров выбрал Москву. Его ждала уже тогда любимая радиофизика и лаборатория колебаний, научное руководство которой осуществлял Леонид Исаакович Мандельштам.

Первыми занятиями Прохорова было изучение распространения радиоволн вдоль земной поверхности и измерение расстояний с их помощью. К 1941 году был готов точный дальномер на основе фазового радиоприемника.

Наступил июнь 1941-го. Прохоров вместе с другими аспирантами записывается в ополчение. Его отправляют на курсы разведчиков. С декабря он на фронте. В 1942 году — первое тяжелое ранение, в 1943-м — второе. Сначала пострадала рука, затем нога, которые чудом удалось сохранить, но в 1944 году его признали «негодным к строевой» и в феврале демобилизовали с медалью «За отвагу».

Прохоров вернулся в ФИАН к прежней области научных интересов, защитил кандидатскую (1946), переключился на радиоспектроскопию и физику ускорителей. Он плотно начинает работать с синхротронами. Предлагает новый режим генерации миллиметровых волн в синхротроне и устанавливает их когерентный характер. По результатам этой работы в 1951 году он защитил докторскую диссертацию.

Появились первые дипломники, и один из них, Николай Басов, стал соавтором Прохорова в главном открытии его жизни.

Потом в институте вспоминали шутку, ходившую в те годы, что физик убедил директора института «обменять синхротрон на Басова». Дело в том, что для своей лаборатории Прохоров сам сконструировал синхротрон. Коллеги на него заглядывались — синхротрон нужен был для множества исследований. И Александр Михайлович согласился отдать уникальную установку в обмен на еще одну штатную единицу в лаборатории для Басова. И позже Прохоров неоднократно подшучивал, что «Басов ему достался очень дорого».

Рассказывают, что вскоре после зашиты докторской диссертации Прохоров решил, что надо переключиться на новую тематику — спектроскопию газов, которая стала основой для их с Басовым достижений в квантовой электронике. И предложил своему коллективу месяц на раздумья: как кардинально перестроить работу. Но у одного была на выходе кандидатская, у другого — докторская, третий еще чем-то занимался. В общем, через месяц все принесли формальные отписки. Тогда Прохоров взял молоток и разбил все приборы в лаборатории. Был большой скандал, половина сотрудников уволилась, но оставшиеся начали заниматься совершенно новым для себя делом, хотя его перспективы были очень туманными. А через несколько лет именно эта работа была удостоена Нобелевской премии.

Читайте также  Ауди а4 1999г генератор

Тогда-то и была высказана идея, что, искусственно изменяя населенности уровней в молекулярном пучке, можно изменять интенсивность линии поглощения. В теоретических расчетах использовалось предсказанное Эйнштейном в 1916 году явление индуцированного излучения, позволяющее усиливать излучение возбужденных молекул. А раз есть усиление, значит, можно сделать и генератор.

В мае 1952 года на Всесоюзной конференции по спектроскопии Прохоров с Басовым впервые говорят о возможности устройства, которое будет испускать когерентное микроволновое излучение за счет вынужденного (индуцированного) излучения молекул. Именно это выступление стало доказательством того, что Прохорову и Басову принадлежит приоритет в этом исследовании. Первую публикацию на эту тему они опубликовали только в октябре 1954 года. А за десять месяцев до этого аналогичную работу публикует американец Чарлз Таунс, который и создал первое такое работающее устройство, получившее название мазер — сокращение от английских слов Мicrowave Аmplification by Stimulated Emission of Radiation (микроволновое усиление с помощью индуцированного стимулированного излучения).

Александр Михайлович Прохоров обсуждает с сотрудниками лаборатории результаты эксперимента

Интенсивно продолжая работы по молекулярным генераторам, Александр Михайлович начинает исследования по спектроскопии твердого тела методом электронного парамагнитного резонанса (ЭПР), открытым в 1944 году Евгением Завойским. Работы по ЭПР в парамагнитных кристаллах, исследования процессов спин-решеточной релаксации привели в конце концов к созданию в 1955–1960 годах квантовых парамагнитных усилителей, или твердотельных мазеров.

В 1955 году Прохоров и Басов разработали принципиально новый метод создания сред с инверсной заселенностью, так называемый трехуровневый метод. В 1958-м Прохоров предложил новый тип резонатора для субмиллиметрового диапазона длин волн — открытый резонатор. Эти открытия легли уже в основу лазерной физики.

В 1959-м за создание нового метода генерации и усиления электромагнитных волн Прохоров и Басов были удостоены Ленинской премии, и в том же году Александра Михайловича избрали членом-корреспондентом АН СССР.

С конца 1950-х научные интересы Прохорова смещаются в область оптического диапазона, а после запуска Теодором Мейманом первого рубинового лазера в 1960 году он полностью переключается на поиски новых твердотельных активных сред для лазеров. В том же году был запущен первый газовый (неон-гелиевый) лазер, а в 1962-м — полупроводниковый. С этого времени начинается бурное развитие лазерной физики — от синтеза новых оптических материалов для генерации и преобразования излучения до исследований взаимодействия лазерного излучения с веществом.

В 1964 году Николаю Басову, Александру Прохорову и Чарльзу Таунсу была присуждена Нобелевская премия по физике «за фундаментальные исследования в области квантовой электроники, приведшие к созданию лазеров и мазеров».

В 1965 году в нашей стране начинается активная работа по созданию высокоэнергетических лазеров, инициированная группой крупных ученых, в числе которых был и Прохоров. Чтобы выполнить этот проект, необходимо было решить множество проблем. Кроме чисто физических вопросов, связанных с работой нового лазера, требовалось создать производство особо чистых материалов, разработать оптику для мощного электромагнитного излучения, объединить десятки тысяч людей, перевооружить промышленность, обучить инженеров и специалистов, открыть новые кафедры в вузах и т. д. По своему размаху эта работа напоминала известный «атомный проект». Приходилось создавать крупнейшие заводы, налаживать совершенно новое производство.

В 1966-м Александр Прохоров совместно с В. К. Конюховым создал газодинамический лазер — новый тип мощного газового лазера. В том же году Александр Михайлович был избран действительным членом АН СССР. А два года спустя был назначен заместителем директора ФИАНа. В 1969-м ему было присвоено звание Героя Социалистического Труда за большие заслуги в развитии советской науки. Тогда же он был назначен председателем научно-редакционного совета издательства «Советская энциклопедия».

В 1970 году в круг научных интересов Прохорова входит волоконно-оптическая связь. По словам академика Евгения Дианова, «в самом начале 70-х годов появились первые работы, показывающие возможность создания стеклянных световодов с малыми оптическими потерями. Александр Михайлович очень интересовался этой проблемой <…> и очень переживал, что у нас эти работы не ведутся. В 1973 году наконец была создана кооперация академических институтов, и уже в 1974 году в совместной работе ФИАН и ИХАН были получены первые волоконные световоды с низкими потерями. Быстрые результаты были получены благодаря личному участию и настойчивости Александра Михайловича».

В 1972 году директором ФИАНа стал Николай Басов. И Александр Михайлович стал директором отделения «А» в ФИАНе. Кроме лаборатории колебаний в него вошли отдел физики плазмы и опытное производство.

С некоторых пор отношения Николая Геннадиевича и Александра Михайловича стали непростыми. Еще в 1963 году Басов с частью сотрудников лаборатории колебаний создал свою лабораторию. Они практически не общались.

В 1973 году Александра Прохорова избрали академиком-секретарем Отделения общей физики и астрономии АН СССР (ООФА). На этом посту он находился до 1991 года. Как академик-секретарь Прохоров очень много сделал для развития физики. Не только в Москве, но и на периферии многие институты были созданы при его участии. Это Институт сильноточной электроники в Томске, Институт лазерной физики в Новосибирске, Институт электрофизики в Екатеринбурге и многие другие. Он активно поддерживал создание Института прикладной физики в Нижнем Новгороде.

В конце 1982 года было принято решение Совета Министров СССР и Президиума АН СССР об образовании нового института на базе Отделения «А» ФИАНа — Института общей физики АН СССР. Его директором был избран академик Прохоров. Александр Михайлович оставался на этом посту до 1998 года.

Новый институт отличался особым разнообразием тематики: лазерная физика и взаимодействие излучения с веществом, интегральная оптика, оптическая связь на волоконных световодах, спектроскопия сверхвысокого разрешения, микроэлектроника, акустика и гидроакустика, использование лазеров в медицине и экологии, физика магнитных явлений, физика тонких пленок и физика поверхности, разработка приборов для наблюдения сверхбыстрых процессов, адаптивная оптика и др. Большие успехи были достигнуты в создании новых твердотельных лазеров.

Большое внимание Прохоров уделял применению лазеров в медицине. Первая в мире лазерная офтальмологическая установка была создана сотрудниками института под руководством Александра Михайловича. Далее последовали лазерные установки для хирургии и лечения туберкулеза легких, лазерный перфоратор для бесконтактного забора крови при проведении анализов, лазеры для стоматологии, литотрипсии, микрохирургии с помощью световодов в гинекологии, фотодинамической терапии онкологических заболеваний.

После распада Советского Союза резко сократилось финансирование научных исследований, многие научные программы были свернуты. Александр Михайлович в этих тяжелых условиях ищет пути выживания, обращается в правительственные структуры с конкретными предложениями, выступает в центральной прессе, объясняет необходимость поддержки фундаментальной науки в стране. В Институте общей физики происходит реорганизация, в результате которой было образовано несколько научных центров, в том числе Центр естественно-научных исследований, бессменным директором которого Александр Михайлович оставался с 1996 года до конца жизни.

8 января 2002 года Александр Михайлович Прохоров в возрасте 85 лет скоропостижно скончался. Он похоронен на Новодевичьем кладбище в Москве рядом с Николаем Геннадиевичем Басовым, который умер за полгода до этого — 1 июля 2001 года. Говорят, что незадолго до смерти Басова они помирились.

Прохоров и Басов: укротившие энергию

Прохоров Александр Михайлович и Басов Николай Геннадиевич – лауреаты Нобелевской премии по физике, создатели лазера.

В этой статье мы решили рассказать о великом изобретении прошлого века, без которого просто немыслимо существование современного человечества. Наша история объединит два имени наших великих соотечественников – Александра Прохорова и Николая Басова.

Прохоров Александр Михайлович и Басов Николай Геннадиевич – лауреаты Нобелевской премии по физике, создатели лазера

Для полноты представления о личностях наших героев представим небольшую биографическую справку.

Прохоров Александр родился 11 июля 1916 года в штате Квинсленд, Австралия. Отец Александра был русским революционером, бежавшим от преследований царского режима.

После возвращения на родину в 1923 году Александр продолжил обучение, поступил, а затем с отличием окончил Ленинградский государственный университет. Затем поступил в аспирантуру Физического института Академии наук СССР. С началом Великой Отечественной войны ушел на фронт, служил в пехоте и разведке. Отмечен боевыми наградами. После демобилизации вернулся к научной работе.

Басов Николай Геннадиевич родился 14 декабря 1922 года в Тамбовской губернии. Сразу после окончания средней школы в 1941 году был призван на военную службу, затем направлен в медицинскую академию Куйбышева. С 1943 года и до окончания Великой Отечественной войны служил на 1-м Украинском фронте. После Великой Победы вернулся к любимой работе.

С 1954 года возглавил Лабораторию колебаний в ФИАН (Физический институт имени Лебедева Академии наук СССР), а с 1968 года занял должность заместителя директора института. С 1982 года являлся директором ФИАН. В разные годы Басов руководил лабораторией радиоспектроскопии НИИ ядерной физики МГУ, там же преподавал в должности профессора, заведовал кафедрой оптики и спектроскопии физического факультета.

Прохоров Александр Михайлович и Басов Николай Геннадиевич – лауреаты Нобелевской премии по физике, создатели лазера

После войны Басов продолжил обучение и в 1950 году окончил МИФИ и защитил диплом. С 1948 года работал в лаборатории ФИАН, защитил кандидатскую и докторскую диссертацию.

Именно в родном институте в 1963 году Басовым была организована первая Лаборатория квантовой радиофизики, руководителем которой он оставался до своих последних дней.

В лаборатории квантовой электроники ФИАМ, совместными стараниями и тяжелым трудом Басова и Прохорова, берет своё начало история создания лазера.

Басов и Прохоров установили принцип усиления электромагнитного излучения квантовыми системами, создали первый квантовый генератор, разработали схему создания инверсной населенности уровней и, как следствие, сформулировали новое направление в физике – квантовую электронику.

Стоит ли говорить о стратегической важности этого важнейшего открытия. Космическая связь, медицина, метрология, технология, народное хозяйство и другие области применения лазеров никогда не вышли бы на столько высокий уровень, не имея в своем арсенале лазерного оборудования. В 1964 году Прохорову и Басову была присуждена Нобелевская премия по физике.

Прохоров Александр при жизни получил множество наград: Орден Отечественной войны, орден «За заслуги перед Отечеством», Большая золотая медаль им. М.В.Ломоносова. В его честь учреждена золотая медаль А.М.Прохорова, а памятник большому ученому установлен на Университетском проспекте в Москве.

Николай Басов так же заслужил серьезные звания и награды. Стал лауреатом Ленинской и Государственной премий, дважды Героем Социалистического труда. Многие работы Басова посвящены теме распространения и взаимодействия мощных лазерных импульсов с веществом. Николаем Басовым разработаны физические основы квантовых стандартов частоты.

Прохоров Александр Михайлович и Басов Николай Геннадиевич – лауреаты Нобелевской премии по физике, создатели лазера

К сожалению, после многих плодотворных лет сотрудничества и получения Нобелевской премии товарищи и коллеги Басов и Прохоров рассорились между собой, в основном, по причине профессиональных разногласий. Но, спустя, 40 лет примирились и даже строили планы совместных проектов.

В 2001 году ушел из жизни Николай Басов. Александр Прохоров очень тяжело переживал смерть своего соратника. В 2002 году Александр Прохоров скончался. Басов и Прохоров похоронены рядом на Новодевичьем кладбище.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: